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Abstract—In wideband spectrum sensing, secondary or un-
licensed users take signal measurements over a given wide
spectrum band and attempt to determine subbands for which
the spectrum is idle and thus available for use. Some recent
approaches to finding such spectrum holes generally employ
some form of edge detection or energy detection. We propose an
algorithm for joint time-frequency wideband spectrum sensing
based on applying a form of temporal spectrum sensing together
with a recursive tree search. The algorithm is able to detect spec-
trum holes accurately even in the presence of bursting primary
signals and primary signals whose power spectral densities have
smooth band edges. Numerical results are presented which show
the performance gain of the proposed algorithm over earlier
approaches to wideband spectrum sensing.1

Index Terms—Cognitive radio, spectrum sensing, dynamic
spectrum access

I. INTRODUCTION

Due to the rapidly increasing demand for capacity in wire-
less networks, radio frequency (RF) spectrum access becomes
more precious every day. However, it has been shown that
fixed frequency allocations have left large portions of the
RF spectrum underutilized [1]. Cognitive radio (CR) aims
to increase utilization of those bands without disruption to
the licensed user [2]. In order to maximize capacity and
minimize service disruptions to the primary user (PU), a cog-
nitive secondary user (SU) must employ sophisticated sensing
techniques. Spectrum sensing techniques can be organized into
three basic categories [3]:

1) Narrowband: A single channel is clearly defined, and
the SU will only sense that channel.

2) Multiband: Multiple narrowband channels, assumed to
be independent, have been defined, and the SU must
sense each channel. Multiband techniques are useful
for applications such as TV whitespace where many
channels are clearly defined.

3) Wideband: The SU must sense over a wide bandwidth
which may contain multiple narrowband channels with
unknown boundaries.

Of the three classes, narrowband techniques have been
studied most extensively. Well-known detection algorithms for
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narrowband sensing include energy detection, cyclostationary
feature detection, and matched filter detection [4]. Research
has also been performed on narrowband sensing algorithms
which use hidden Markov models (HMMs) and related models
to characterize dynamic behavior of the PU and predict future
spectrum holes [5], [6]. Modeling PU activity as a Markov
process has been extended to the multiband case For example,
optimal per-channel sensing durations for the multiband case
were derived in [7].

In the wideband spectrum sensing scenario, an SU must
sense an entire band and determine channel boundaries. The
bandwidth that must be sensed can vary from the order of
1 MHz to 1 GHz. This is required if the SU can not leverage
any external information about channel allocation. A SU need
only perform wideband sensing during initialization and may
then revert to multiband or narrowband sensing during normal
operation. In general, PU signals may be heterogeneous in
frequency, bandwidth, and power, so robust wideband sensing
algorithms must be developed to detect all PU activity within
the spectrum band. State-of-the-art techniques for wideband
sensing include wideband energy detection [8] and frequency-
domain edge detection [9]. Edge detectors can offer an im-
provement over energy in terms of SNR threshold, but they
can also perform relatively poorly on signals gradual rolloffs
in their band edges. Neither technique takes into account
the temporal dynamics of PU signals, and consequently can
perform rather poorly when PU signals have low duty cycles.

In this paper, we propose a framework for joint time-
frequency sensing that outperforms both wideband energy
and edge detection techniques particularly in the presence
of dynamic PU signals. Moreover, the proposed framework
can leverage the large set of existing narrowband sensing
techniques. In the proposed sensing algorithm, the spectrum
band is is divided into smaller channels and modeled as a
balanced binary tree. An HMM is applied to narrowband
channel to model the temporal dynamics, and a recursive
search for spectrum holes is performed. If any holes are
detected that are adjacent in frequency, they are merged into
a single spectrum hole, with the objective of maximizing SU
capacity over the entire band.

The remainder of the paper is organized as follows. In
Section II, we evaluate and compare the performance of



wideband energy detection and edge detection and demonstrate
their limitations in the presence of dynamic PU signals. In
Section III, we develop a recursive tree search algorithm to
perform joint time-frequency sensing in the wideband regime.
In Section IV, we present simulation results that compare
the proposed wideband sensing approach to wideband energy
detection and edge detection. Concluding remarks are given
in Section V.

II. EVALUATION OF WIDEBAND ENERGY AND WIDEBAND
EDGE DETECTION

The wideband energy detector is a very simple wideband
sensing technique in which the SU estimates the power spec-
tral density (PSD) over the entire band and applies an energy
threshold to determine PU activity [8], [10] . Many PSD
frames may be averaged to increase reliability. This simple
algorithm has several limitations. Like all energy detectors in
additive white Gaussian noise (AWGN), this technique has
limited sensitivity, and performance is severely degraded at
low SNR. Furthermore, this technique operates on a snapshot
in time, and dynamic behavior of the PU will degrade perfor-
mance, since both the on and off cycles will be averaged into
the PSD estimate.

Figs. 1 and 2 depict sensing results of a frequency-domain
energy detector for orthogonal frequency division multiplexing
(OFDM) and Gaussian minimum shift keying (GMSK) sig-
nals, respectively. The simulation experiments were conducted
on the GNU radio software platform [11] running on the Ettus
N210 USRP board [12]. All of the signals shown have an
SNR of 10 dB, but for the dynamic signals, the SNR of the
PSD estimate decreases with the duty cycle. This decreased
SNR degrades the performance of the energy detector for both
modulation schemes.

Performing a maximum hold operation rather than averaging
PSD frames has been proposed for the detection of dynamic
PU signals [13]. However, maximum hold energy detectors
are outperformed by averaging detectors in low SNR [13].
Furthermore, maximum hold energy detectors can actually
degrade in performance as observation lengths are increased
due to increased likelihood of an abnormally high noise power
during the sensing duration. These two shortfalls make max-
imum hold energy detectors inadequate for CR applications
and motivate the need for a wideband sensing algorithm that
adequately detects dynamic PU activity.

An alternative wideband spectrum sensing technique that
has been studied in the literature employs frequency-domain
edge detection to determine channel boundaries. A popular
edge detection technique uses the continuous wavelet trans-
form to decompose the edge detector into multiple resolutions
and multiplies the resolutions together, which has a beneficial
effect of reducing the noise [9]. While the edge detectors
do offer an improvement over energy detectors in terms of
SNR threshold, they come with several limitations. Most
importantly, the edge detectors require that PU signals have
sharp transitions in the frequency domain. This allows them to
work well with the rectangular spectra of OFDM (see Fig. 3)
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Fig. 1. Results of a wideband energy detector for OFDM signals with 10 dB
SNR and 100%, 50%, 25%, and 12.5% duty cycles.

  

π
1
 = 0.5

SNR = 10 dB

π
1
 = 0.25

SNR = 10 dB

π
1
 = 0.125

SNR = 10 dB

π
1
 = 1.0

SNR = 10 dB

Fig. 2. Results of a wideband energy detector for GMSK signals with 10 dB
SNR and 100%, 50%, 25%, and 12.5% duty cycles.

and quadrature amplitude modulation (QAM) with low excess
bandwidth, but edge detectors tend to fail on signals with
gradual rolloffs on their band edges, such as QAM with large
excess bandwidth and GMSK. The performance of an edge
detector using the multi-resolution enhancements from [9] is
shown for GMSK in Fig. 4.

Furthermore, wideband edge detectors are also degraded
by dynamic behavior of the PU. Because energy from idle
and active cycles are averaged into the PU detector, the
performance of the detector decreases with the duty cycle of
the PU. In the next section, we propose a technique that applies
narrowband sensing techniques for the wideband scenario.
Narrowband techniques that use HMMs to model the dynamic
behavior of the PU are leveraged to overcome the limitations
discussed for current wideband sensors.
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Fig. 3. Results of a wideband edge detector for OFDM signals with 10 dB
SNR and 100%, 50%, 25%, and 12.5% duty cycles.
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Fig. 4. Results of a wideband edge detector for GMSK signals with 10 dB
SNR and 100%, 50%, 25%, and 12.5% duty cycles.

III. RECURSIVE ALGORITHM FOR JOINT
TIME-FREQUENCY SENSING

In our proposed algorithm for joint time-frequency sensing,
the spectrum band is organized as a balanced binary tree,
where each node has two child nodes representing the upper
and lower halves of the band. The band is recursively divided
into smaller pieces as depth increases [14]. A maximum depth
is selected based on a desired resolution for the wideband
sensing algorithm. The depth of the tree is defined given by
dtree =

⌈
log2

(
W0

Wr

)⌉
, where W0 is the bandwidth, and Wr

is the maximum frequency resolution. The division of a band
into subbands using a balanced binary tree is shown in Fig 5.

The algorithm recursively divides a given channel in half
until the desired resolution is reached. An inorder traversal, a
recursive search where child nodes are visited before parent

nodes [14] is performed on the balanced binary tree that we
use to model the channel. At the highest resolution, the channel
is sensed using received signal strength measurements and an
HMM is used to model the channel dynamics, assuming a
lognormal shadowing model as in [6].

The HMM, denoted by (Y,X), consists of an observable
sequence of received signal strengths, Y = {Yk}∞k=1, and a
hidden state sequence X = {Xk}. At time k, Yk represents the
averaged received signal power in logarithmic units (dBm) and
Xk represents the state of the PU, i.e., Xk = 1 when the PU is
idle and Xk = 2 when the PU is active. Due to the lognormal
shadowing, given Xk = a, Yk is a Gaussian random variable
with mean µa and variance σ2

a for a = 1, 2. We shall assume
that X is a Markov chain, though it could be extended to a
bivariate Markov chain to model non-geometric state sojourn
time distributions [6]. Let G = [gab : a, b ∈ {1, 2}] denote
the transition matrix of X , where gab denotes the transition
probability from state a to state b. The parameter of the HMM
is denoted by φ = (G,µ,R), where µ = [µ1, µ2] and R =
[σ2

1 , σ
2
2 ]. The stationary state probability vector π = [π1, π2]

can be obtained from G by solving the equations π = πG
and π1 + π2 = 1.

The Baum-Welch algorithm [15] is used to obtain a max-
imium likelihood estimate of the HMM parameter for the
given channel. The HMM parameter estimate is then used to
calculate an SNR estimate. Let µlin,a = 10

µa
10 denote the mean

received signal strength in linear units, i.e., mW, for a = 1, 2.
Then the SNR estimate is computed as

S

N
=
µlin,1 − µlin,2

µlin,1
. (1)

The capacity of the channel is then estimated using the sensed
bandwidth, the estimated SNR, and the stationary distribution
of the HMM. The capacity is derived from the capacity
for a single user channel with availability π1 in a TDMA
system [16]:

C = π1 log2

(
1 +

S

N

)
. (2)

A heuristic test is then performed on the sensing results to
determine whether the channel can be used by the SU. The
heuristic determines whether the probability that the PU is idle,
π1, surpasses a given threshold πmin,1. If the sensed channel is
determined to be usable, the center frequency, bandwidth, and
estimated capacity of the channel are passed to the parent node
in the tree. As the algorithm recurses upward, the parent nodes
combine two lists of channels: one from the lower half of the
band, and the other from the upper half of the band. If the
highest-frequency channel from the lower band and the lowest-
frequency channel from the upper band are adjacent, sensing
is then performed on the combination of those two channels
and the capacity of the combined channel is estimated. Two
channels are combined into a single channel if the following
condition is met:

Ca+b ≥ β(Ca + Cb), (3)
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Fig. 5. A spectrum band with center frequency fc0 and bandwidth W0 organized into a balanced binary tree.

TABLE I
ALGORITHM COMPLEXITY PARAMETERS.

Parameter Description
Nc Number of channels at the finest sensing resolution
Nt Number of filter taps for the channel selecting BPF
Ns Number of samples in the sensing duration
Ni Number of Baum-Welch iterations
K Number of HMM states (K = 2)

where β is a number between 0 and 1 that represents the
inefficiency of splitting a channel into two due to guard bands
and other overhead. This test will determine whether using
the two channels independently or combining them into a
single channel will maximize system throughput for the SU. A
more formal description of this wideband sensing framework
is given in Algorithm 1.

The computational complexity of the algorithm is given by

O
(
(Nc log2Nc)×

(
NtNs +NiK

2Ns

) )
, (4)

where the various parameters involved are shown in Table I.
The terms in the complexity expression 4 are derived as
follows: Nc log2Nc is the number of nodes in the binary
tree [14] and is therefore the maximum number of narrowband
channels that can be sensed; NtNs is the complexity of the
filtering operation used to select a narrowband channel for
sensing. Channel selection may be efficiently performed using
a channelizer based on a polyphase decimator, which will
efficiently perform the filtering operation and reduce the num-
ber of samples tested in the Baum-Welch algorithm [17]. The
term NiK

2Ns represents the complexity of the Baum-Welch
algorithm; Ni may be reduced by choosing initial parameters
that represent an educated guess of the PU dynamics [18].

We will not formally describe any of the other func-
tions used in Algorithms 1 and 2, but basic descriptions
are given as follows. The function BPF(f1, f2) designs a
finite impulse response (FIR) bandpass filter between f1
and f2. The function FilterAndDecimate(x(n), h(n),dec) per-
forms bandpass filtering and decimation on the received wide-
band signal x(n) using a polyphase channelizer with FIR
taps h(n) and decimation rate dec to select the band of

Algorithm 1 Joint time-frequency sensing algorithm.
1: function RSense(fc, W , Wr, x(n))
2: if W > Wr then
3: Lh = RSense(fc +W/2,W/2,Wr, X(n))
4: L1 = RSense(fc −W/2,W/2,Wr, X(n))
5: L = AggregateCh(Lh, L1, X(n))
6: else
7: h(n) = BPF(fc −W/2, fc +W/2)
8: dec = Floor(W0/W )
9: y(n) = FilterAndDecimate(x(n), h(n), drate)

10: ŷ(n) = EnergyTh(y(n))
11: (G,µ,R) = BaumEst(y(n), ŷ(n))
12: if π1 > πmin,1 then
13: C = Capacity(π,µ,W )
14: return list with single entry (fc,W,C)

Algorithm 2 Aggregate channels.
1: function AggregateCh(Lh, Ll, x(n))
2: (fc,h,Wh, Ch) = LowestCh(Lh)
3: (fc,l,Wl, Cl) = HighestCh(Ll)
4: L = CombineLists(Lh, Ll)
5: if fc,h −Wh/2 == fc,l +Wl/2 then
6: h(n) = BPF(fc,l −Wl/2, fc,h +Wh/2)
7: dec = Floor(W0/(Wl +Wh))
8: y(n) = FilterAndDecimate(x(n), h(n),dec)
9: ŷ(n) = EnergyTh(y(n))

10: (G,µ,R) = BaumEst(y(n), ŷ(n))
11: if π1 > πmin,1 then
12: C = Capacity(π,µ,Wl +Wh)
13: if C > β(Ch + Cl) then
14: Remove (fc,h,Wh, Ch) and (fc,l,Wl, Cl)
15: from L
16: Add (fc,h + fc,k)/2,Wl +Wh, C) to L
17: return L



interest. The function EnergyTh(y(n)) performs hard decision
energy detection on the selected narrowband channel y(n).
The function BaumEst(y(n), ŷ(n)) estimates the parameter
of the PU in the selected narrowband channel y(n) using
the Baum-Welch algorithm with initial energy detection de-
cisions ŷ(n). The function Capacity(π,µ,W ) estimates the
channel capacity via (2). The functions HighestCh(L) and
LowestCh(L) select the highest-frequency narrowband channel
and the lowest-frequency narrowband channel, respectively,
from a list of estimated channel parameters L. The function
CombineLists(L1, L2) merges two lists of estimated channel
parameters into a single list and sorts the list in decreasing
order of center frequency.

IV. SIMULATION AND NUMERICAL RESULTS

Using the GNU radio/Ettus USRP platform, we tested the
wideband energy detector, the wideband edge detector, and
the proposed joint time/frequency detector against OFDM
and GMSK signals with duty cycles varying among 1.0,
0.5, 0.25, and 0.125. We assumed a minimum duty cycle
πmin,1 = 0.9 and an overhead per channel of β = 0.3. For each
modulation scheme and duty cycle tested, a wideband capture
was generated with signals of random center frequency and
baud rate. The modulated data on the signals was generated
by a uniform random number generator. All of the signals had
an SNR of 10 dB.

Qualitative results are depicted in Fig. 6 for OFDM and
Fig. 7 for GMSK. It can be seen that the proposed joint
time-frequency detector performed well for all duty cycles
and both simulated modulation schemes. The qualitative sim-
ulation results of the proposed joint time-frequency detector
can be compared to the qualitative results from Section II.
Comparing Fig. 6 to Figs. 1 and 3 shows that reducing the
duty cycle does not degrade the performance of the proposed
detector for OFDM like it does for wideband energy detection.
Similarly, a comparison of Fig. 7 to Figs. 2 and 4 shows that
the proposed detector is also not degraded by reduced duty
cycles for GMSK. Furthermore, comparing Fig. 7 to Fig. 4
shows that the smooth band edges of GMSK do not degrade
the performance of the proposed detector like they do for the
wideband energy detector.

Quantitative sensing results are depicted by ROC (receiver
operating characteristic) curves generated by simulation. Per-
formance of the wideband energy detector is shown in Fig. 8
for OFDM and Fig. 9 for GMSK. The ROC curves were
then averaged over many random wideband captures using
the same modulation, duty cycle, and SNR. It can clearly be
observed that detector performance degrades as PU duty cycle
decreases. Performance of the joint time/frequency detector is
shown in Fig. 10 for OFDM and Fig. 11 for GMSK. It is
clear from these results that the proposed joint time/frequency
detector’s performance was not significantly degraded by
reduced duty cycles.
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Fig. 6. Results of joint time-frequency detector for OFDM signals with 10 dB
SNR and 100%, 50%, 25%, and 12.5% duty cycles.
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Fig. 7. Results of joint time-frequency detector for GMSK signals with 10 dB
SNR and 100%, 50%, 25%, and 12.5% duty cycles.

V. CONCLUSION

The proposed wideband spectrum sensing framework per-
forms comparably for bursting signals with various duty cycles
to to the wideband energy detector applied to signals with
100% duty cycle. For bursting signals, the recursive joint time-
frequency sensing algorithm proved to be much more robust
than the frequency-only sensing algorithms. The power of the
proposed sensing algorithm comes at the cost of computation
time; Nc log2Nc narrowband sensing operations must be
performed, as well as FIR filtering for channel selection.

We used a simple energy detector as the front-end for the
recursive sensing algorithm. Better performance in low SNR
could be achieved by applying a state estimation/prediction re-
cursion for an HBMM [6]. Alternative narrowband techniques,



Fig. 8. ROC curve for wideband energy detector for OFDM signals with 10 dB
SNR and 100%, 50%, 25%, and 12.5% duty cycles.

Fig. 9. ROC curve for wideband energy detector for GMSK signals with 10 dB
SNR and 100%, 50%, 25%, and 12.5% duty cycles.

Fig. 10. ROC curve for joint time/frequency detector for OFDM signals with
10 dB SNR and 100%, 50%, 25%, and 12.5% duty cycles.

Fig. 11. ROC curve for joint time/frequency detector for GMSK signals with
10 dB SNR and 100%, 50%, 25%, and 12.5% duty cycles.

such as cyclostationary detectors, could also be investigated in
conjunction with the proposed wideband sensing framework.
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