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Abstract—Providing end-to-end network delay guarantees in
packet-switched networks such as the Internet is highly desirable
for mission-critical and delay-sensitive data transmission, yet it
remains a challenging open problem. Due to the looseness of the
deterministic bounds, various frameworks for stochastic network
calculus have been proposed to provide tighter, probabilistic
bounds on network delay, at least in theory. However, little
attention has been devoted to the problem of regulating traffic
according to stochastic burstiness bounds, which is necessary in
order to guarantee the delay bounds in practice. We propose
and analyze a stochastic traffic regulator that can be used in
conjunction with results from stochastic network calculus to
provide probabilistic guarantees on end-to-end network delay.
Numerical results are provided to demonstrate the performance
of the proposed traffic regulator.1

Index Terms—Stochastic network calculus, traffic shaper, end-
to-end delay, traffic burstiness bounds.

I. INTRODUCTION

Currently, the Internet does not provide end-to-end delay
guarantees for traffic flows. Even if the path taken by a given
traffic flow is fixed, e.g., via mechanisms such as software-
defined networking (SDN) or multi-protocol label switching
(MPLS), network congestion arising from other flows can
result in highly variable delays. The variability and random
nature of traffic flows in a packet-switched network make it
very challenging to provide any type of performance guaran-
tees. The standard approach to providing network performance
guarantees consists of two basic elements:

1) Admission control: A new flow should only be admitted
to the network if sufficient resources are available for
the new flow, as well as existing flows, to maintain their
performance guarantees.

2) Traffic regulation: The traffic flow must be regulated to
ensure that it does not use more resource than what was
negotiated by the admission control scheme.

Admission control relies on a means of characterizing the
traffic. On the other hand, the random and bursty nature of
traffic flows in packet-switched networks make them difficult
to characterize. Even if the flows can be modeled as random
arrival processes, the problem of developing a resource alloca-
tion scheme to guarantee end-to-end performance in a network
is generally intractable.

1This work was supported in part by the U.S. National Science Foundation
under Grant No. 1717033.

In his seminal work, Cruz [1], [2] proposed the so-called
(σ, ρ) characterization of traffic, which imposes a determin-
istic bound on the burstiness of a traffic flow. By bounding
traffic flows according to (σ, ρ) parameters, Cruz developed
a network calculus which determined how these parameters
propagate through network elements and from which end-to-
end delay bounds could be derived. An important feature of the
(σ, ρ) characterization is that it could be enforced by a traffic
regulator. The (σ, ρ) framework of Cruz provides a machinery
for end-to-end delay guarantees. In practice, however, the
deterministic (σ, ρ) characterization leads to delay bounds that
are very loose, which would lead to low utilization of the
network resources. Nevertheless, the (σ, ρ) characterization
was the basis for further research into stochastic bounds on
traffic burstiness and stochastic network calculus to provide
tighter, probabilistic end-to-end delay guarantees.

The development of stochastic network calculus and associ-
ated performance bounds remains an active topic of research.
However, little attention has been devoted to the problem of
traffic regulation to ensure that the input traffic of a network
conforms to a stochastic traffic bound. In the deterministic
network calculus of Cruz, the (σ, ρ) traffic regulator is tightly
coupled to the (σ, ρ) traffic characterization. In effect, the
(σ, ρ) traffic characterization is defined operationally in terms
of a (σ, ρ) traffic regulator. To our knowledge, a traffic
regulator to enforce a stochastic traffic bound has not been
addressed previously in the literature.

In this paper, we develop a traffic regulator to enforce the so-
called generalized Stochastically Bounded Burstiness (gSBB)
traffic bound in [3], [4]. We refer to our proposed regulator as a
stochastic (σ∗, ρ) regulator, since the burst size parameter can
take on one of finite set of values. We describe the design and
basic properties of the stochastic (σ∗, ρ) regulator and describe
a practical implementation. Our analytical results establish that
it enforces the gSBB bound.2 We demonstrate the operation
of the (σ∗, ρ) regulator via a numerical example involving a
particular gSBB bound.

The remainder of the paper is organized as follows. In
Section II, we review the deterministic (σ, ρ) regulator of Cruz.
In Section III, we develop our proposed stochastic (σ∗, ρ)
regulator. The numerical example is presented in Section IV.
Concluding remarks are given in Section V.

2Due to space constraints proofs are omitted.



II. DETERMINISTIC (σ, ρ) REGULATOR

The (σ, ρ) traffic regulator was introduced by Cruz in [1],
[2] as a key element in a network calculus to bound the end-
to-end delay of a traffic flow in a network. Let R = {R(t) :
t ≥ 0} denote a traffic rate process such that the amount of
traffic arriving in an interval [s, t] is given by

A(s, t;R) :=

∫ t

s

R(τ) dτ, (1)

in units of bits. In this paper, we assume here that traffic
processes are in continuous-time, although our development
could also be framed in discrete-time. A traffic stream R is
said to be (σ, ρ)-bounded, denoted as R ∼ (σ, ρ), if

A(s, t;R) ≤ ρ(t− s) + σ, ∀s ∈ [0, t]. (2)

For an idealized fluid model of input traffic, a (σ, ρ) traffic
regulator (σ, ρ ≥ 0) ensures that the output traffic stream Ro ∼
(σ, ρ) and traffic departs the regulator in the same order as
it arrives to the regulator, i.e., the service discipline is first-
come first-served (FCFS). In the practical case in which the
traffic consists of discrete packets of maximum length L and
the input/output links to the regulator have finite capacity C,
the output traffic stream satisfies Ro ∼ (σ+ δ, ρ), where δ :=
(1−ρ/C)L (see Fig. 1). Traffic regulation can be accomplished
by dropping, low-priority marking, or delaying packets. In the
first two cases, the traffic regulator is sometimes referred to as
a traffic policer whereas in the third case it is referred to as
a traffic shaper. The traffic regulators discussed in this paper
will be of the traffic shaper variety.

Suppose a traffic stream R is offered to an infinite-buffer
FCFS system with constant service rate ρ. The (virtual)
workload of the system at time t is defined by

Wρ(t;R) := max
0≤s≤t

[A(s, t;R)− ρ(t− s)]. (3)

Clearly, Wρ(t;R) is a decreasing function of ρ. It can easily
be shown that R ∼ (σ, ρ) if and only if

Wρ(t;R) ≤ σ, ∀t ≥ 0. (4)

Equation (4) provides a useful alternative characterization of
a (σ, ρ)-bounded traffic stream.

Now suppose that the input and output traffic links to and
from a (σ, ρ) regulator have a finite capacity C > ρ. Consider
an input traffic stream Ri to the regulator. Let sj denote the
arrival time of the jth packet, tj its departure time, and Lj its
length in bits. The jth packet begins arriving at time sj and is
received completely at the regulator at time aj := sj +Lj/C.
We assume that a packet does not arrive when the previous
one is being received. i.e., aj < sj+1.

The operation of the regulator can be described in terms of
the workload Wρ(sj ;Ri). At time sj , if Wρ(sj ;Ri) > σ, the
regulator delays the packet such that at its departure time tj ,
the condition Wρ(tj ;Ro) ≤ σ holds. Hence, the delay incurred
on the jth packet in the regulator is [1]

dj = tj − sj = [Wρ(sj ;Ri)− σ]+/ρ, (5)

Ro ∼ (σ + δ, ρ)

δ = (1− ρ/C)L

Ri

(σ, ρ)

Fig. 1. Deterministic (σ, ρ) regulator with input/output links of capacity C.

where [x]+ := max{x, 0}. The jth packet completely departs
the regulator at time

bj := tj + Lj/C. (6)

At times other than the departure time, the workload may not
necessarily be bounded by σ, but always satisfies [1]

Wρ(t;Ro) ≤ σ + (1− ρ/C)L, ∀t ≥ 0, (7)

Thus, Ro ∼ (σ + δ, ρ), where δ can be viewed as the
maximum error margin in regulating packetized traffic when
the input/output links have capacity C (see Fig. 1).

As shown Fig. 2, when a packet is being received by
the regulator, e.g., during [sj , aj ], the workload Wρ(t;Ri)
increases linearly with slope C − ρ. Conversely, during the
time between the complete arrival of a packet and the initial
arrival of the next packet to the system, e.g., during [aj , sj+1],
the workload Wρ(t;Ri) decreases linearly with slope −ρ.
Similarly, when a packet departs the regulator, e.g., during
[tj , bj ], the workload Wρ(t;Ro) increases linearly with slope
C − ρ. When packets are not departing the system, e.g.,
during [bj , tj+1], Wρ(t;Ro) decreases linearly with slope −ρ.
Assume that the buffer of the regulator is empty at t = s1. Let
δj := (1− ρ/C)Lj denote the error margin due to regulating
the jth packet. The governing equations for a (σ, ρ) regulator
in terms of the workloads Wρ(t;Ri) and Wρ(t;Ro) are as
follows [1]:

Wρ(sj ;Ri) = [Wρ(aj−1;Ri)− ρ(sj − aj−1)]
+, (8)

Wρ(aj ;Ri) = Wρ(sj ;Ri) + δj , (9)

Wρ(tj ;Ro) =

{
σ, if Wρ(sj ;Ri) > σ,
Wρ(sj ;Ri), if Wρ(sj ;Ri) ≤ σ,

(10)

Wρ(bj ;Ro) = Wρ(tj ;Ro) + δj , (11)

for j = 1, 2, . . ..

III. STOCHASTIC (σ∗, ρ) REGULATOR

The (σ, ρ) regulator may enforce a loose deterministic
bound on the traffic or incur unnecessarily large delays on
the traffic. To address these issues, we propose a stochastic
traffic regulator, which is designed to enforce a probabilistic
bound on the traffic:

P {Wρ(t;R) ≥ γ} ≤ f(γ), ∀γ ∈ [0, T ], (12)

where f(γ) is a non-increasing positive bounding function and
T is a limit on the tail distribution of the workload (see [5]).
We refer to a regulator that enforces (12) as a stochastic (σ∗, ρ)
regulator, where the burstiness bound σ∗ is variable. When
T = ∞, (12) is equivalent to the definition of generalized
Stochastically Bounded Burstiness (gSBB) proposed in [4],
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Fig. 2. Example of the operation of a (σ, ρ) traffic regulator.

σ∗(j) = max {σ ∈ Σ}

such that:

P {Wρ(t;Ro) ≥ γ} ≤ f(γ),

∀ t ≤ bj , ∀γ ∈ [0, T ]

(σ∗
, ρ)

Ri R1 Ro

Fig. 3. Stochastic (σ∗, ρ) traffic regulator.

which is an extension of Stochastically Bounded Burstiness
(SBB) introduced by [6]. The SBB concept is a generalization
of the Exponentially Bounded Burstiness (EBB) developed
earlier in [7], [8]. The EBB concept is closely related to the
exponential bounds derived in [9] (cf. [10]).

Users specify their traffic flows with a parameter
(ρ, f(γ), T ) in terms of a bound of the form (12). By applying
results from the gSBB network calculus, the admissibility of a
given set of traffic flows with respect to a certain probabilistic
end-to-end delay constraint can be determined. However, such
an end-to-end delay guarantee can only be provided if the
user traffic streams conform to their stated traffic parameters.
The stochastic traffic regulator developed in this paper can
be applied at the network edge to ensure that a user’s traffic
stream does not violate the traffic parameter provided to the
admission control unit.

A. Basic Design and Properties

A schematic of the stochastic (σ∗, ρ) regulator is shown
in Fig. 3. The input and output links of the regulator are
assumed to have capacity C. A buffer at the front-end of the

regulator delays incoming packets until all previous packets
have departed, thus ensuring a FCFS service discipline. Let
Ri and Ro denote, respectively, the input traffic to and output
traffic from the regulator. We denote internal traffic stream
departing from the front-end buffer as R1. Let sj and s̃j
denote, respectively, the arrival and departure time of the jth
packet at the buffer. The regulator incurs a delay on the jth
packet such that it begins departing the buffer at time tj and
completely leaves the regulator at time bj . The departure times
tj are chosen with the objective of incurring minimal delay
while satisfying

P {Wρ(t;Ro) ≥ γ} ≤ f(γ), ∀ t ≤ bj , ∀γ ∈ [0, T ]. (13)

Since the front-end buffer delays each packet until the com-
plete departure time of the previous packet from the regulator,
we have

s̃j = max{sj , bj−1}. (14)

We now discuss how the departure time tj is determined.
As in a deterministic (σ, ρ) traffic regulator, the rate parameter
ρ must be greater than or equal to the long-term average input
traffic rate, i.e.,

ρ ≥ lim
t→∞

1

t− s

∫ t

s

Ri(τ) dτ, ∀s ≥ 0, (15)

to avoid incurring an unbounded packet delay in the long-
term. Unlike the burstiness parameter σ in the deterministic
regulator, the proposed stochastic regulator involves a variable
parameter chosen for the jth packet as σ∗(j) ∈ Σ, where
Σ := {σ1, σ2, . . . , σM} is a finite set of values ordered such
that σ1 > σ2 > . . . > σM . The values in Σ arise from
approximating the bounding function f(γ) in the interval



[0, T ] by a stepwise function f̃(γ), consisting of M steps (see
Fig. 4) such that

f̃(γ) =



1, 0 ≤ γ ≤ TM ,
f(TM−1), TM ≤ γ ≤ TM−1,
...

...
f(T1), T2 ≤ γ ≤ T1,
0, T1 ≤ γ,

(16)

where Ti σi, and M , are defined as follows:

T1 = T ; Ti − Ti+1 ≥ δ; σi = Ti − δ ≥ 0, (17)

for i = 1, 2, . . . ,M . If T and δ are fixed, the maximum
possible value of M is ⌊T/δ⌋ − 1. We set f̃(γ) = 1
for γ ∈ [0, TM ] because P {Wρ(t;Ro) ≥ 0} = 1. Since
f̃(γ) ≥ f(γ) in this range, the bound may not be enforced
for these values of γ. However, the violation probability is
bounded by TM/T , which can be made as small as δ/T ≪ 1.
We also remark that setting f̃(γ) = 0 for γ ≥ T1 limits the
burst size of the output traffic to T . Strictly speaking, this is
not necessary for enforcing (12) and can be avoided by setting
f̃(γ) to a positive value in this range.

Similar to the deterministic regulator (cf. (5)), the delay
incurred on the jth packet by the (σ∗, ρ) regulator can be
computed as follows:

dj = tj − sj = [Wρ(sj ;Ri)− σ∗(j)]+/ρ, (18)

where the burstiness parameter for the jth packet is determined
according to

σ∗(j) = max
{
σ ∈ Σ : P {Wρ(t;Ro) ≥ γ} ≤ f̃(γ),

∀ t ∈ [bj−1, bj ],∀γ ∈ [0, T ]
}
. (19)

The set enclosed in braces in (19) is non-empty since σM

satisfies the specified conditions. Thus, σ∗(j) is well-defined.
The packet j begins departing the regulator at time tj , given
by (18), and completely leaves at time bj , given by (6).
Essentially, the stochastic regulator determines the minimum
delay that can be incurred on an incoming packet such that
the upper bound in (19) is met during the time between the
complete departures of packets j − 1 and j. To achieve this,
σ∗(j) is chosen as the maximum value of σ ∈ Σ such that the
bound is satisfied.

Upon arrival of the jth packet at time sj , the value of σ∗(j)
determined using according to (19) as follows. First, initialize
σ∗(j) = σ1. Then tj is computed using (18) and the departure
time bj is computed from (6). Then based on the departure
time, tj , Wρ(t;Ro) is calculated and if the condition in (19) is
met the procedure stops. Otherwise, the procedure is repeated
with the next value in the ordered set Σ, i.e., σ∗(j) = σ2. The
procedure stops when σ∗(j) is set equal to the largest value in
Σ such that the condition in (19) is satisfied. Two difficulties
with this procedure are 1) evaluation of the probability in (19)
and 2) testing that the condition holds for all γ ∈ [0, T ]
and for all t ∈ [bj−1, bj ]. In Section III-B, we develop a
practical implementation of the stochastic (σ∗, ρ) regulator,

1

γ

T = T1T2T3T4TM−1TM

. . .

. . .

f(γ)

f̃(γ)

Fig. 4. Stepwise approximating function for f(γ).

which addresses these issues.

B. Practical Implementation

To analyze the stochastic (σ∗, ρ) regulator, it is convenient
to introduce the internal traffic stream R1 (see Fig. 7), Anal-
ogous to equations (8)–(11) for the deterministic (σ, ρ) regu-
lator, the following equations involving R1, with σ∗(j) = σ,
can be derived:

Wρ(s̃j ;R1) = [Wρ(bj−1;Ro)− ρ(s̃j − bj−1)]
+, (20)

Wρ(tj ;Ro) =

{
σ, if Wρ(s̃j ;R1) > σ,
Wρ(s̃j ;R1), if Wρ(s̃j ;R1) ≤ σ,

(21)

Wρ(bj ;Ro) = Wρ(tj ;Ro) + δj , (22)

tj = [W (s̃j ;R1)− σ]+/ρ+ s̃j . (23)

Equation (20) follows from the equality Wρ(bj−1;Ro) =
Wρ(bj−1;R1), since at most one packet is in the server part
of the regulator at any given time.

The computations involved in the stochastic (σ∗, ρ) regula-
tor can be simplified by introducing the concept of overshoot
duration and by assuming stationarity and ergodicity of the
input traffic stream Ri.

Definition 1. Given a threshold value ζ > 0 and a traffic stream
R, an overshoot interval with respect to R and ζ is a maximal
interval of time η such that Wρ(τ ;R) ≥ ζ for all τ ∈ η. Let
|η| denote the length of interval η. Let O(t) denote the set
of overshoot intervals contained in [0, t]. Then the overshoot
duration up to time t is defined as

T̃ζ(t;R) =
∑

η∈O(t)

|η|. (24)

In Fig. 2, the overshoot set with respect to threshold value
ζ until the end of time domain depicted in the figure consists
of three intervals [τ1, τ2], [τ3, τ4] and [τ5, τ6]. Note that, as
the maximum value for σ∗ is σ1, it can be easily verified
using (17) and (7) that

T̃T1(t;Ro) = 0, ∀t > 0. (25)

Given a time interval [a, b], define W1 := Wρ(a;Ro) and
W2 := Wρ(b;Ro). We define the increment in overshoot
duration when the workload of the output process is increasing



due to a packet departure from the regulator as follows:

α(a, b, ζ) =


b− a, ζ ≤ W1,
W2−ζ
C−ρ , W1 ≤ ζ ≤ W2

0, W2 < ζ.

(26)

We define the increment in overshoot duration when the
workload is decreasing due to the packet inter-departure time
as follows:

β(a, b, ζ) =


b− a, ζ ≤ W2,
W1−ζ

ρ , W2 ≤ ζ ≤ W1,

0, W1 < ζ.

(27)

The following proposition shows how to compute T̃ζ(t;Ro)
at times t = tj and t = bj of packet j. See Figs. 7 and 5.
Proposition 1.

T̃ζ(tj ;Ro) = T̃ζ(bj−1;Ro) + β(bj−1, tj , ζ), (28)

T̃ζ(bj ;Ro) = T̃ζ(tj ;Ro) + α(tj , bj , ζ), (29)

If the input traffic Ri is stationary and ergodic, the output
traffic Ro satisfies

T̃ζ(t;Ro)

t
∼ P {Wρ(t;Ro) ≥ ζ} . (30)

Therefore, for sufficiently large t, P {Wρ(t;Ro) ≥ γ} in (19)
can be approximated by the left-hand side of (30). The
following theorem simplifies the procedure for finding σ∗(j)
to satisfy the constraint of (19) and provides the basis for a
practical implementation of the stochastic (σ∗, ρ) regulator.
Theorem 1. If the input traffic, Ri, to a stochastic (σ∗, ρ)
regulator is stationary and ergodic, σ∗(j) can be obtained as
follows. Let Bj = {σ ∈ Σ : σ > Wρ(s̃j ;Ro)} and

Σj =

{
Σ, if Bj = ∅,
Σ\Bj ∪ {minBj}, otherwise. (31)

Next, let

Aj :=

{
σ ∈ Σj\{σM} :

T̃ζ(bj ;Ro)

bj
≤ f̃(σ + δ)

}
(32)

where bj and ζ are functions of σ. Here, bj(σ) is given by (6)
and (23), and ζ(σ) = max {γ ∈ Σ : γ < σ}+ δ. Then we set

σ∗(j) =

{
maxAj , Aj ̸= ∅,
σM , otherwise. (33)

According to Theorem 1, instead of verifying the upper
bound in (19) for all γ ∈ [0, T ] and all t ∈ [bj−1, bj ], we need
only compute the set Aj in (32). For each σ ∈ Σj\{σM},
we compute a temporary value for tj from (23) and the
corresponding values of bj and ζ. We then update the values
of T̃ζ(tj ;Ro) and T̃ζ(bj ;Ro) using Proposition 1 and test the
condition in (32). After Aj has been determined, σ∗(j) is
computed using (33). The value of tj used to delay packet j
in the regulator is then computed using (23) with σ = σ∗(j).

For the stochastic (σ∗, ρ) regulator, computation of the
departure time, tj , of the jth packet requires updates to at
most 2(M − 1) values of T̃Ti(tj ;Ro) and T̃Ti(bj ;Ro) for

threshold values i = 2, . . . ,M . Once the departure time tj is
determined, 2(M − 1) values of T̃Ti(tj ;Ro) and T̃Ti(bj ;Ro),
for i = 2, . . . ,M , need to be updated. Thus, the overall com-
putational complexity of the procedure outlined in Theorem 1
is O(M) per packet.

IV. NUMERICAL RESULTS

We consider a system in which the packets sizes Lj are
drawn randomly according to

Lj ∼ UniformI[Lmin, Lmax], (34)

where UniformI[a,b] denotes the uniform distribution over the
set of integers contained in the interval [a, b]. The inter-arrival
times of the packets, sj+1 − sj , are determined as follows:

sj+1 − sj ∼ Uj +
Lj

C
, (35)

where Uj ∼ Exp(λ), i.e., {Uj} is an i.i.d. sequence of
exponentially distributed random variables with parameter λ.
By adopting (35) to model the inter-arrival times, we ensure
that packets are received after the previous ones have been
fully received, i.e., the packets will not overlap with each other.
In a system described by (34)–(35), ρ−1Wρ(sj) is equal to
the waiting time experienced by the jth customer in a G/G/1
system in which the service time of the jth customer is given
by Sj = (ρ−1 − C−1)Lj and the inter-arrival time between
the jth and (j + 1)th customer is Uj [1], [11].

In this example, we set Lmin = 5, Lmax = 10, and λ =
0.25, and ρ = 0.65. We use the following bounding function:

f(σ) :=

{
−2.5× 10−3σ + 1, 0 ≤ σ ≤ 40,
−5× 10−3σ + 1.1, 40 ≤ σ ≤ 200.

(36)

In Fig. 6, f̃(σ) is defined by approximating f(σ) by a
stepwise function with M = 10 and Ti+1 − Ti = 20 for
i = 1, 2, . . . ,M − 1. Observe that the output traffic is shaped
to satisfy the desired bound.

Using the same model for inter-arrival and packet lengths,
we have investigated the impact of the parameter M on traffic
shaping of the input traffic. From Fig. 7, we see that as M is
increased, a tighter fit of the output traffic to the desired bound
can be achieved. In our example, the maximum possible value
of M is M = 56, for which a very tight fit to the bound
is achieved. Table I presents the average delay and standard
variation of the delay for the packets. Note that as M increases
the average delay decreases and the standard deviation of the
packet delay also decreases. These results are expected, since
an increase in M implies that the delay incurred on a packet
can increase in smaller increments, resulting smaller overall
variance. In addition, a larger value of M results in a smaller
average delay since there are more smaller choices of delay
for a packet in order to maintain the burstiness bound.

V. CONCLUSION

The stochastic traffic regulator developed in this paper
addresses an open problem in the application of stochastic
network calculus to provide probabilistic end-to-end delay
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Fig. 6. Performance of the stochastic (σ∗, ρ) traffic regulator.
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Fig. 7. Traffic regulator performance with different M values.

TABLE I
TRAFFIC SHAPING DELAY WITH DIFFERENT M VALUES.

M Average Delay Standard Deviation of Delay

10 93 113
20 81 107
56 75 99

guarantees. The key property of the proposed stochastic (σ∗, ρ)
regulator is the enforcement of the gSBB traffic burstiness
bound defined in [4] for an arbitrary bounding function. The
performance of the stochastic regulator was demonstrated in a
numerical example with a particular gSBB bounding function.
The (σ∗, ρ) regulator could be applied in conjunction with the
phase-type bounds proposed in [5].
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