
Hidden Markov Process Based Dynamic Spectrum
Access for Cognitive Radio

Thao Nguyen†,∗, Brian L. Mark∗, Yariv Ephraim∗
†Shared Spectrum Company

1595 Spring Hill Rd, Suite 110
Vienna, VA 22182

∗Dept. of Electrical and Computer Engineering

George Mason University, MS 1G5
4400 University Drive, Fairfax, VA

email: tnguyed@gmu.edu, bmark@gmu.edu, yephraim@gmu.edu

Abstract—Cognitive radio is an emerging technology for sens-
ing and dynamic access of spectrum in mobile radio envi-
ronments. It aims at dynamically allocating unused bandwidth
among secondary users without causing harmful interference to
the primary users. This approach, which has clear economical
benefits, has recently attracted significant research effort. In
this paper, we propose a new approach to dynamic spectrum
access in which the occupancy state of each frequency band at
each time instant is estimated, and available bands are allocated
accordingly. Estimation is performed from power spectral density
measurements which are assumed to obey a hidden Markov
process. The value of the hidden state represents the status of
a given frequency band which could be free or occupied. We
have trained the system using real spectrum measurements, and
tested it on simulated data for which the occupancy state of each
frequency band at each time instant is known. We demonstrate
the performance of the proposed approach and compare it with
a simple energy detector which has previously been proposed for
this application.1

Index Terms—Cognitive radio, hidden Markov process, dy-
namic spectrum access

I. INTRODUCTION

It is well known that statically allocated radio bandwidth
remains idle for extended periods of time, see, e.g., [1]. To
better utilize the bandwidth, and thus accommodate an ever
increasing demand, cognitive radio (CR) technologies have
been proposed to allow secondary (unlicensed) users to make
use of idle spectrum without causing harmful interference to
primary (licensed) users. In the jargon of CR, idle frequency
bands are referred to as white spaces. A key feature of a CR
is its ability to sense the radio environment and dynamically
switch transmission from one channel to another.

Sensing the environment is usually done by measuring the
power spectral density and estimating the status of the primary
user as being active or idle. This formulation is amenable
to estimating a state variable from some given noisy and
possibly incomplete observations. Indeed, several authors have
formulated the problem as that of estimating the state of a

1This work was supported in part by the U.S. National Science Foundation
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hidden Markov process (HMP). A survey of hidden Markov
processes may be found in [2]. In [3], real-time measurements
collected in the paging band 928–948 MHz were used to
validate the on-off behavior of primary users. In [4], [5], a
spectrum sensing approach based on an HMP and quickest
detection was proposed. In [6], [7], an HMP-based classifier
is used in conjunction with a cyclostationary detector for
dynamic spectrum access. All of these approaches rely on
finite-alphabet HMPs, and only [3] employs real spectrum
occupancy measurements.

In this paper, we pursue hidden Markov modeling of the
cognitive radio problem. In its general form, it is the problem
of sensing broadband signals, representing spectrum from
several users, and deciding activity level for each sub-band
that was initially assigned to a particular licensed user. Thus,
a multi-state HMP whose parameter is recursively adapted,
is required. Here we focus on a subset of this problem in
which there is a single primary user and we assume that
the environment is stationary. For this narrowband cognitive
radio problem, we assume a two-state HMP with continuous
alphabet measurements. One state represents activity of the
primary user while the other represents idleness of the user.
The parameter of the HMP is estimated offline from real
measurements using the Baum algorithm. Given this param-
eter, the state of activity of the primary user at a given
time and frequency band is determined using the forward-
backward algorithm. Thus, at each time instant, the posterior
probability of each of the two states is estimated, and a
maximum a-posteriori decision is implemented. Contrary to
earlier attempts, our approach does not require quantization of
the spectral measurements which may inevitably obscure the
goals of CR. Furthermore, we recursively predict the activity
of the primary user from a derivative of the forward recursion.

We have carefully implemented and tested our HMP-based
CR system using real spectrum occupancy measurements
collected in the 380–382 MHz band over a period of 25 hours.
Our system outperforms a commonly used energy detector
especially at low signal-to-noise ratios. While the energy



Fig. 1. System model for HMP-based spectrum access model in CR.

detector implements a likelihood ratio for Gaussian densities,
the HMP based approach effectively implements a likelihood
ratio for mixtures of Gaussian densities, and consecutive tests
are not independent due to the inherit memory of the HMP.

The remainder of the paper is organized as follows. Sec-
tion II develops the proposed HMP-based system. Section III
discusses the system performance evaluation using real spec-
trum measurement data. Concluding remarks are given in
Section IV.

II. SYSTEM MODEL

The configuration of the proposed HMP-based system for
dynamic spectrum access is shown in Fig. 1. Time is assumed
to be partitioned into slots of duration ∆. Thus, we assume
a discrete-time model, where the time variable t takes values
in {0, 1, . . .}. The radio spectrum of interest consists of N
channels. The input to the system at time t consists of an
estimate of the power spectral density in units of dB. Each
channel is modeled as a two-state HMP with conditionally
Gaussian observations. The output of the system consists of
a list of available channels for CR operation at time t and a
corresponding list of backup channels for time t+ 1.

The system consists of three main components: channel
parameter estimator, channel state estimator and predictor,
and channel access policy. The channel parameter estima-
tor estimates the HMP parameter for a given channel from
spectrum measurements collected offline as training data. The
channel state estimator and predictor uses the estimated HMP
parameter for a given channel to estimate the current state
(at time t) and to predict the next state (at time t + 1) of
each channel. Finally, the channel access policy identifies a
best channel for CR operation at time t and a list of backup
channels for CR operation at time t+1 in case the best channel
at time t becomes busy. The number of backup channels to be
identified by the channel access policy may be configurable.

A. Channel parameter estimator

The channel parameter estimator estimates an HMP param-
eter associated with each of the N channels based on offline
training data. For a given channel, the HMP parameter can be
estimated using the Baum re-estimation algorithm [2], [8].

An HMP may be viewed as a discrete-time bivariate random
process {(St, Yt), t = 1, 2, . . .}, where {St} is the hidden
process and {Yt} is the observable process. The hidden process
{St} is a discrete-time finite state homogeneous Markov
chain. The random variables {Yt} are conditionally indepen-
dent given {St}. Furthermore, the distribution of Yt is time-
invariant and depends on {St} only through St.

The hidden process {St} takes values in a finite set S =
{0, . . . ,M − 1}. In this paper, we shall focus on the case
M = 2, such that state 1 represents that the primary user is
on, whereas state 0 represents a white space on the channel at
the current time t. Our approach can easily be generalized to
incorporate m steps of dependency or memory such that each
state represents a sequence of on/off states of the primary user
at times t−m+ 1, t−m+ 2, . . . , t. In this case, the number
of states M = 2m, resulting in a higher-order HMP (cf. [5]),
i.e., an HMP of order m.

For each t, the observation Yt takes values in an obser-
vation space Y . We assume in general that the observation
is represented by a vector consisting of K components. If
the observation represents the total power of the channel
we have K = 1. If the channel is divided into K > 1
frequency bins within its bandwidth, the observation consists
of K components such that each component represents the
total power in a frequency bin. Thus, in general we have
Y = RK , when power is measured in units of dBm. An HMP
with m > 1 and K > 1 may capture existing temporal and
spectral cross-correlation and thus allow better sensing of the
channel.

Let πi = P (S1 = i), i ∈ S, denote the probability
that the initial state is i. Let π = {πi, i ∈ S} denote a
vector representing the initial probability distribution of {St}.
Let A = {aij , i, j ∈ S} denote the transition matrix of
{St}. Let b(y|i) denote the probability density function of the
observation vector y given the state i. We assume that b(y|i)
is given by a multivariate Gaussian density with mean vector
µi and covariance matrix Σi:

b(y|i) ∼ N (µi,Σi). (1)

Relying on asymptotic properties of the log-power spectral
density estimate [9], we assume that each Σi is a diagonal
matrix. Let µ = {µi, i ∈ S} and Σ = {Σi, i ∈ S}. The HMP
for a given channel is then characterized by the parameter
λ = (π,A, µ,Σ).

Let sT = {st, t = 1, . . . , T, st ∈ S} denote the sequence
of hidden states of the HMP from time 1 to time T . The
probability of the state sequence sT is given by

pλ(sT ) =

T∏
t=1

ast−1st , (2)

where we have used the convention as0s1 = πs1 . Let
yT = {yt, t = 1, . . . , T, yt ∈ Y}, denote the sequence of
observations from time 1 to time T .

We denote the probability density function of y under the
HMP parameter λ by pλ(y) and the conditional density of y
given the hidden state sequence s by pλ(y|s). The conditional
density of yT given sT is given by

pλ(yT |sT ) =

T∏
t=1

b(yt|st) (3)



The density of yT can be expressed as

pλ(yT ) =
∑
sT

pλ(sT , yT ) =
∑
sT

T∏
t=1

ast−1stb(yt|st). (4)

An HMP parameter estimate λ̂ is obtained by maximizing
the likelihood given an observation sequence yT :

λ̂ = arg max
λ

ln pλ(yT ) = arg max
λ

ln
∑
sT

pλ(sT , yT ), (5)

where the maximization is performed by the Baum re-
estimation algorithm. This algorithm generates a sequence
of HMP parameter estimates with nondecreasing likelihood
values. Each iteration of the Baum algorithm starts with an
the current parameter λι and estimates a new parameter λι+1

by maximizing the following auxiliary function

φ(λι+1) =
∑
sT

pλι(s
T |yT ) ln pλι+1

(sT , yT ) (6)

over the HMP parameter λι+1. The algorithm is terminated
when a convergence criterion is satisfied, e.g., when the
relative difference of the log-likelihoods ln pλι+1

(yT ) and
ln pλι(y

T ) is smaller than or equal to a given threshold.
Let qt(i, j) = P (St−1 = i, St = j|yT ) and qt(j) =

P (St = j|yT ) under the HMP parameter λ. Maximization
of the auxiliary function in (6) results in the following re-
estimation formulas:

π̂i = q0(i), (7)

âij =

∑T
t=1 qt(i, j)∑

j∈S
∑T
t=1 qt(i, j)

, (8)

and the parameters of the density b(yt|st = i) ∼ N (µi,Σi)
can be estimated as

µ̂i =

∑T
t=1 qt(i)yt∑T
t=1 qt(i)

, (9)

Σ̂i =

∑T
t=1 qt(i)[I � (yt − µ̂i)(y − µ̂i)′]∑T

t=1 qt(i)
, (10)

where I denotes the identity matrix, � denotes element-by-
element matrix multiplication, and ′ denotes matrix transpose.
In (10), the operation involving I and � ensures that Σ̂i is a
diagonal matrix.

The probabilities qt(i, j) and qt(j) can be efficiently calcu-
lated using the forward-backward formulas as follows:

qt(i, j) =
Ft−1(i)Bt(j)aijb(yt|j)∑

i,j∈S Ft−1(i)Bt(j)aijb(yt|j)
, 2 ≤ t ≤ T, (11)

qt(j) =
Ft(j)Bt(j)∑
i∈S Ft(i)Bt(i)

, 1 ≤ t ≤ T. (12)

where Ft(i) is the forward parameter for state i at time t, and
Bt(j) is the backward parameter for state j at time t. These
parameters are given by

F1(i) = πib(y1|i), (13)

Ft(i) =
∑
j∈S

Ft−1(j)ajib(yt|i), 2 ≤ t ≤ T, (14)

and

BT (j) = 1, (15)

Bt(j) =
∑
i∈S

Bt+1(i)ajib(yt+1|i), 1 ≤ t ≤ T − 1. (16)

A proper scaling of the forward and backward probabilities
is required. In particular, a recursive scaling is introduced, in
which both Ft(i) and Bt(j) are normalized by

∑
i∈S Ft(i) at

each time t. In addition, the calculation of each summand of
the forward-backward formulas and of the probabilities qt(i, j)
is done in the log domain due to the relatively small numbers
involved. The values of ln b(yt|st) are also shifted into the
dynamic range of the computer prior to their summation,
simply by replacing the out of range values with the min and
max values of the dynamic range.

B. Channel state estimator and predictor

Spectrum sensing is one of the important features of a CR.
The goal of the spectrum sensing is to estimate the true state
of the channel, given measurements, with low probability of
false alarm while maintaining high probability of detection. In
most of the current spectrum sensing approaches, the channel
state is estimated based only on the current measurement,
not on the measurement history. With HMP-based spectrum
sensing, we can utilize the estimated HMP parameter, which
is computed based on the measurement history, beside the
current measurement to estimate the current channel state more
accurately. In addition, this approach provides the capability
to predict the next channel state, whereas most of the current
spectrum sensing approaches are not capable of doing so.

We present the filtering and prediction recursions in the
rest of this section. Let λ̂ = (π̂, Â, µ̂, Σ̂) denote the current
estimate of the HMP parameter for the channel. The prediction
and filtering recursions are based on the conditional probabil-
ities pλ̂(st|yt−1) and pλ̂(st|yt), respectively. The conditional
probabilities p(st|yt) and p(st|yt−1) can be computed as
follows [2]:

pλ̂(st|yt) =
pλ̂(st|yt−1)b(yt|st)∑M
st=1 pλ̂(st|yt−1)b(yt|st)

, 1 ≤ t ≤ T, (17)

where pλ̂(s1|y0
1) = π̂s1 and

pλ̂(st|yt−1)=
∑

st−1∈S
âst−1stpλ̂(st−1|yt−1), 2 ≤ t ≤ T.

(18)

C. Channel access policy

The channel access policy makes decisions based on the
sensing outcome from the channel state estimator and predic-
tor. The goal is to prevent harmful interference to the primary
user while maximizing the transmission time of the secondary
user.

In dynamic spectrum access, a CR may begin data trans-
mission on a given channel if the channel is sensed as idle.
Conversely, if a CR is transmitting on a channel and senses the
presence of a primary user, it must stop its data transmission



in order to avoid causing harmful interference to the primary
user. In practical hardware implementations of a CR, there
exists a non-negligible latency between the time the channel
is sensed and the time when the CR can begin or stop its
data transmission on the channel, according as the channel is
sensed as idle or busy at the current time [10], [11].

The channel access policy uses channel state estimation
and prediction information to minimize the potential for in-
terference between the primary user and the CR during this
latency period. Let tlat denote the latency time required for
a CR to stop or begin its data transmission after sensing the
channel. The channel access policy allows the CR to transmit
at the current time t only if the current state estimate at
time t and the predicted state at time t+ tlat indicate an idle
channel. Likewise, the channel access policy forces an active
CR to stop its data transmission if either the current state
estimate or the predicted state at time t+ tlat indicates a busy
channel. The channel state estimate can be obtained using (17).
Assuming that tlat is on the order of a slot time or smaller,
the predicted state can be obtained using (18). For larger tlat,
a generalization of (18) to provide multi-step prediction could
be used, at the expense of a loss in prediction accuracy and
consequently, a more conservative channel access policy.

In a system with multiple channels, a CR may have a choice
of several idle channels to use. In this case, the effective
transmission time of the secondary user can be maximized
by identifying a best channel and a list of backup channels.
The criteria for selecting these channels would again be based
on the channel state estimation and prediction information
provided by (17) and (18). The best channel would be the
one predicted to remain idle for the longest period of time
starting from time t. Thus, the CR can minimize the frequency
of switching among different channels during its data trans-
mission. Backup channels would be those predicted to be idle
at t + 1. When the CR sensed that the current channel is no
longer avaiable, it could quickly switch to one of the backup
channels. Maintaining a list of backup channels can also help
to reduce the rendezvous time needed to select a common idle
channel for communications between a pair of CRs.

III. PERFORMANCE ANALYSIS

In this section, we evaluate the performance of the CR
system discussed in Section II.

A. Channel parameter estimation with real spectrum measure-
ments

We utilized the spectrum occupancy measurements collected
on the rooftop of Shared Spectrum Company using a spectrum
analyzer. Fig. 2 shows the occupancy spectrum measurements
in 380-382 MHz band over 25 hours. The frequency resolution
of the measurement is 10 kHz and the repetition rate is 4.4
seconds. This spectrum band is occupied by primary users
with narrow bandwidth emitters (i.e., 11 kHz and 6 kHz). The
plot shows that most of the channels are being used but not
all channels have full duty cycle.

Fig. 2. Spectrum occupancy measurements in 380-382 MHz range.

Fig. 3. Spectrum Measurement and Histogram Plots.

In this section, we only focus on HMP parameter estimation
for a single channel and assume that there are two hidden
states. We shall consider the channel with center frequency
at 381.7375 MHz and 11 kHz bandwidth. The parameters
of other channels in the band were estimated similarly. The
number of observation symbols for this channel is 20860.
Fig. 3 shows the spectrum measurement and histogram plots
of the channel. As shown in the figure, the transmissions on
this channel have a high SNR but low duty cycle.

Given the measurements of the channel, we have used the
algorithm described in Section II-A and estimated the HMP



parameters as follows:

π̂ =
[

1 0
]
, (19)

Â =

[
0.9687 0.0313
0.7970 0.2030

]
, (20)

µ̂ =
{
−113.9235, −92.4308

}
, (21)

Σ̂ =
{

3.4105, 1.5993
}
. (22)

The estimated parameter set shows consistency with measure-
ment plots. The initial probability vector π̂ has very high
probability for the off state (π̂0 = 1) and very low probability
for the on state (π̂1 = 0). The transition matrix Â also indicates
that the probability of the channel staying in the off state (â00)
is much higher than staying in the on state (â11). The mean
vector µ̂ shows that the mean value of the observations in
the off state is equal to −113.9 dBm while that in the on
state is −92.4 dBm, which are very close to the measurements
observed from the plot. Finally, the variance in the off state
is about 3.4 while that in the on state is about 1.6, which is
again consistent with the plots.

B. Channel state estimation and prediction

To test our system, we have generated data from an HMP
with the same parameter value as that estimated from the real
data. For this simulated data, we have the observation sequence
as well as the underlying hidden state sequence. This allows
us to apply our sensing algorithm to the observation sequence,
estimate the hidden state sequence, and compare it with the
true state sequence. This procedure is necessary, since the
state occupancy sequence for the real data is not known. More
specifically, the following steps were carried out.

1) Generate a state sequence s̃T = {s̃t, t = 1, . . . , T} using
the estimated initial distribution π̂ and transition matrix
Â.

2) Generate an observation sequence ỹT = {ỹt, t =
1, . . . , T} associated with the generated state sequence
s̃T using the estimated mean vector µ̂ and standard
deviation vector σ̂.

3) Re-estimate the parameter set λ̃ of the channel from
the observation sequence in Step 2). The new estimated
parameter set λ̃ should be close to the parameter set λ̂
used in Steps 1) and 2). We obtained

π̃ =
[

1 0
]
, (23)

Ã =

[
0.9693 0.0307
0.7990 0.2010

]
, (24)

µ̃ =
{
−113.9428, −92.4948

}
, (25)

Σ̃ =
{

4.9121, 2.0220
}
. (26)

4) Apply the filtering and prediction recursions using the
new estimated parameter set λ̃ and the observation
sequence ỹT to get the current state and predict the next
state for every time t.

5) Compute the probability of false alarm, Pfa, and proba-
bility of detection, Pd, by comparing the estimated state
sequence in Step 4) with the state sequence s̃T generated

SNR (dB) Pfa Pd Ppe

6 4.000e-3 0.7158 0.0403
8 7.986e-4 0.9018 0.0395
10 1.495e-4 0.9849 0.0382
12 4.964e-5 0.9972 0.0342
14 0 1 0.0381

TABLE I
HMP-BASED SPECTRUM SENSING PERFORMANCE:

Pfa = FALSE ALARM PROBABILITY, Pd = DETECTION PROBABILITY,
AND Ppe = PREDICTION ERROR PROBABILITY.

SNR (dB) Pfa Pd

6 4.000e-3 0.6915
8 7.986e-4 0.8910

10 1.495e-4 0.9812
12 4.964e-5 0.9972
14 0 1

TABLE II
ENERGY DETECTOR PERFORMANCE: Pfa = FALSE ALARM PROBABILITY,

Pd = DETECTION PROBABILITY.

in Step 1). Note that a false alarm event occurs when the
idle channel is detected as busy, and a missed detection
event occurs when the busy channel is detected as idle.

6) Compute the probability of prediction error, Ppe, by
comparing the predicted state sequence in Step 4) with
the state sequence s̃T generated in Step 1).

Table I shows the values of Pfa, Pd, and Ppe, respectively,
for various SNR values. For this channel, the probability of
false alarm Pfa is very small for all values of SNR and
decreases as the SNR increases. The probability Pd increases
as the SNR increases. Pfa and Pd approach to 0 and 1,
respectively, when SNR is greater than 14 dB. Unlike Pfa

and Pd which have either increase or decrease trend, the
probability of prediction error Ppe has negligible fluctuation
around 0.038 for all SNR values.

The probability of prediction error is computed as follows:

Ppe = Ppe|offPoff + Ppe|onPon (27)

where Ppe|off and Ppe|on are the conditional probabilities of
prediction error given channel off state and channel on state;
Poff and Pon are the probabilities of off state and on state,
respectively. Due to the measurement characteristics of the
selected channel, the off probability Poff is much larger than
the on probability Pon. Consequently, the prediction error
probability in the off state, Ppe|off , is much smaller than the
prediction error probability in the on state, Ppe|on. The overarll
probability of prediction error shown in Table I is small for
most SNR levels because both Ppe|off and the probability of
the on state Pon are small.

The HMP-based spectrum sensing algorithm was compared
with an energy detector. The receiver operating characteristic
(ROC) curve of the energy detector is shown in Fig. 4 for
the various SNR values considered here. Table II shows the
results for false alarm probability Pfa and detection probability
Pd. Comparing the two approaches shows that the HMP-
based approach outperforms the energy detector for small SNR



Fig. 4. Energy detector ROC curve.

values, i.e., when SNR ≤ 10 dB, and both detectors have
comparable performance for higher SNR.

IV. CONCLUSION

In this paper, we presented a method for dynamic spectrum
access based on a hidden Markov process (HMP) model
of a cognitive radio channel. The HMP has a continuous
observation alphabet while the underlying state represents the
on/off status of the primary user on a given channel. We
evaluated the performance of the HMP-based spectrum sensing
approach using real spectrum occupancy measurements.

The proposed HMP-based detector outperforms the com-
monly used energy detector especially in the regime of low
signal-to-noise ratio and is more robust since it takes into
account the measurement history. Another key feature of the
HMP-based spectrum sensing is that it provides the predicted
channel state with low probability of error while conventional
detectors (e.g., energy detector) are not able to predict the
future state. In ongoing work, we are investigating variations
of the HMP model to obtain better prediction performance and
to apply the results to the channel access policy. We are also
investigating extensions of the proposed HMP-based approach
to wideband spectrum sensing [12] and to scenarios involving
collaboration among multiple cognitive radios distributed over
a coverage area [13], [14].
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