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Abstract—This paper analyzes the aggregate interference in
a cognitive radio network. We consider a model in which the
secondary transmitters are geographically distributed according
to a Poisson point process in a wireless environment subject to
shadowing noise and path loss. The secondary transmitters may
transmit simultaneously and consequently incur an aggregate
interference level on the primary system. We derive the mo-
ment generating function and the expectation of the aggregate
interference for this model using properties of the Poisson point
process. Based on the interference analysis, a scheme is proposed
to estimate the maximum transmission power for each of the
active secondary transmitters so as to satisfy a constraint on the
aggregate interference. Our numerical results show a significant
gain in the achievable capacity for the secondary system relative
to an earlier scheme in which only a single secondary transmitter
was permitted to transmit at any given time.1

Index Terms—Cognitive radio, Spectrum sensing, Poisson point
process, Interference, Power Control

I. INTRODUCTION

In wireless networks, the available spectrum resource has
become more and more scarce due to the explosive de-
velopment of wireless communications. However, spectrum
measurement studies have shown that significant portions of
wireless spectrum are highly underutilized [1], [2]. To exploit
the unused spectrum resource, dynamic or opportunistic spec-
trum access has been proposed which permits communica-
tion between the secondary users (unlicensed users) without
sacrificing the communication performance of the primary
users (licensed users). This can be achieved by cognitive radio
technology, which is capable of sensing the available spectrum
and dynamically tuning to different frequency channels to
access it.

There has been much recent research activity on cognitive
radios and opportunistic spectrum access. We focus here on
spectrum sensing in the spatial domain. A key parameter in
spatial spectrum sensing is the maximum interference-free
transmit power (MIFTP), which is defined as the maximum
power at which a given secondary transmitter can transmit
without causing harmful interference to any of the primary
receivers. In [3], the MIFTP for the secondary transmitter is
estimated based on signal strength measurements taken by a
group of secondary nodes. However, this is done under the
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assumption that the secondary transmitters have the knowledge
of their exact locations, and can exchange their observation
and transmission decisions with negligible delay. Further, it is
assumed that at most one secondary transmitter can transmit at
a given time. In practice, due to the uncertainty in the number
and locations of secondary nodes as well as channel fading,
shadowing, and other uncertain environment-dependent con-
ditions, the communication performance of the primary users
may be seriously affected by the aggregate interference gener-
ated by multiple secondary users transmitting simultaneously
[4]. Thus, accurate modeling of the aggregate interference is
crucial to designing a cognitive radio network and quantifying
the effect of the interference on the performance of the primary
system.

A mathematical framework for characterizing interference
in a cognitive radio network was proposed in [5]. In this
framework, the secondary transmitters are scattered in the
Euclidean plane according to a Poisson point process and
operate asynchronously in a wireless environment subject to
path loss, shadowing, and multipath fading. Although the
aggregate interference from the secondary transmitters and
its impact on the performance of the primary transmitter are
quantified, the paper does not address how to utilize this
information to carry out power control. Several papers in
the literature have addressed the issue of power control in
a cognitive radio network, see, e.g., [6]–[8].

In this paper, we adopt the framework in [5] and develop
a spatial spectrum sensing model in which the secondary
transmitters are scattered in the Euclidean plane according
to a spatial Poisson point process. All transmissions are
assumed to be omnidirectional and the signal propagation
follows a lognormal shadowing model, which includes a
path loss component and shadowing. We consider a single
primary transmitter located in the center of the plane, together
with the population of secondary transmitters. This models
a cognitive radio network in which the primary transmitter
population is relatively sparse. Based on this model, the
aggregate interference is quantified. Furthermore, a power
control scheme for the secondary transmitters, taking into
account the aggregate interference, is proposed. In particular,
we analyze the following scenarios:

1) Fixed secondary transmission power: In this scenario,
the secondary users employ a simple Listen-Before-Talk
dynamic spectrum access scheme with fixed transmis-
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sion power during the talk phase (see, e.g., [9], [10]).
Using the distribution of the secondary transmitters and
the propagation loss model, we derive the moment
generating function and expectation of the aggregate
interference.

2) Secondary transmitters with power control: This sce-
nario takes the tolerable interference threshold of the
primary receiver into account. A maximum transmit
power for each of the active secondary transmitters
is determined by taking into account the aggregate
interference caused by their simultaneous transmissions.

The remainder of the paper is organized as follows. Sec-
tion II describes the system model for spatial spectrum sens-
ing. Section III develops an approach to derive an expression
for the moment generating function and the expectation of the
aggregate interference for this model under the assumption of
fixed secondary transmission power. Section IV proposes a
power control scheme for secondary transmitters based on the
aggregate interference model. Section V presents simulation
results. Finally, the paper is concluded in Section VI.

II. SYSTEM MODEL

We consider a spatial spectrum sensing model with a single
primary transmitter node p, one primary receiver node v
(or victim node) and a population of secondary transmitters
distributed within an area in the Euclidean plane. The point
process of secondary transmitters is assumed to form a real-
ization of a homogeneous Poisson point process with intensity
Λ. Each secondary transmitter is active with probability α,
independent of the other secondary transmitters. Using the
thinning property of the Poisson point process (see, e.g.,
[11]), the active secondary transmitters form a realization of
a homogeneous Poisson point process with intensity λ = αΛ.
For an area of interest A, let Φ(A) denote the number of active
secondary transmitters in A and let |A| denote the physical area
corresponding to A. Then the probability distribution of Φ(A)
is given by

P{Φ(A) = k} = e−λ|A|
(λ|A|)k

k!
, k = 0, 1, 2.... (1)

Let A = {1, . . . ,Φ(A)} denote the index set of active
secondary transmitters and let ai denote the ith secondary
transmitter, i ∈ A. The system scenario is illustrated in Fig. 1.
Here, nodes v1, v2, and v3, represent hypothetical victim nodes
that lie closest to active secondary transmitters a1, a2, and a3,
respectively, within the coverage area of p.

We assume that all transmissions are omnidirectional and
that signal propagation is governed by a lognormal shadowing
model [12, (2.4.15)]. Hence, the propagation loss in dB
between two nodes i and j can be expressed as

Li,j = g(di,j , κ) +W [dB], (2)

where the function g(d, κ) represents the path loss component,
with κ denoting the path loss factor [13]. For simplicity we
assume that g(d, κ) = 10κ log10 d and κ is given, so it can be
denoted by g(d). The shadowing noise W is typically modeled
as a zero-mean white Gaussian noise process with variance

σ2
w, which is independent of the path loss [14]. We denote

the Gaussian distribution with mean µ and variance σ2 by
N(µ, σ2). Thus, W ∼ N(0, σ2

w). Hence, the received power
at node v due to node p is given by

Rv = sp − Lp,v = sp − g(dp,v) +W [dBm], (3)

where sp is the transmitted power of node p. Similarly, the
received power at node v from node a, where node a is any
node chosen from A = {1, . . . ,Φ(A)}, is given by

Iv = sa − La,v = sa − g(da,v) +W [dBm], (4)

where sa is the transmitted power of node a.
The outage probability of a victim node v with respect to

the transmitter p, is the probability that the received power
Rv from node p falls below a detection threshold rmin [dBm]
when p is transmitting:

Pout(p, v) , P{Rv < rmin}. (5)

In general, rmin is determined by the primary receiver’s
structure, noise statistics, and quality of service (QoS) re-
quirements. The coverage distance is the maximum distance
between the node p and any potential victim node v such that
the outage probability does not exceed a threshold εcov > 0:

dcov(p) , max{dp,v : Pout(p, v) 6 εcov}
= g−1(sp − rmin + σQ−1(1− εcov)), (6)

where g−1(·) denotes the inverse of g(·) and Q(x) ,
1√
2π

∫∞
x
e−

t2

2 dt denotes the standard Q-function.
The interference probability with respect to a given victim

node v is the probability that Iv exceeds an interference toler-
ance threshold Imax [dBm] when node a is transmitting. This
threshold can be set to meet the primary system’s interference
tolerance policy as follows:

Pint(a, v) , P{Iv > Imax}. (7)

Under the shadowing model, the interference probability is
given by

Pint(a, v) = Q

(
Imax − sa + g(da,v)

σva

)
. (8)

III. AGGREGATE INTERFERENCE WITH FIXED
TRANSMISSION POWER

In this section, we analyze the aggregate interference for
a cognitive radio network represented in a Euclidean plane.
In the Euclidean plane, the norm for a position vector z =
(z1, z2) is given by ‖z‖ =

√
z21 + z22 . The scenario is shown

in Fig. 1, with the primary transmitter located in the center of
the plane. We assume that all secondary transmitters employ
a Listen-Before-Talk (LBT) scheme [9], [10] to dynamically
access the available spectrum. In the LBT scheme, each
secondary transmitter consists of two states: listen state and
talk state. During the listen state, the secondary transmitter
does not transmit any signal, but it estimates the power of
the received signal from the primary transmitter to determine
whether it can switch to the talk state to transmit a signal.
For example, if the received power R < η, the secondary
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Fig. 1. Interference scenario.

transmitter would transition to the talk state; otherwise, it
remains in the listen state. During the talk state, the secondary
transmitter can transmit at a fixed power. After transmitting for
a pre-specified maximum duration, it returns to the listen state
to listen again. Compared with other models, which depend on
the primary receivers to send out beacons to notify other nodes
of their locations [5], the LBT model requires less energy and
fewer bandwidth resources.

In the LBT scheme, each of the active secondary transmit-
ters ai, i ∈ A, compares the received power from the primary
transmitter to a deterministic threshold η. We introduce a
function U(x) to indicate whether a secondary transmitter
located at position x in the plane has the right to access the
network:

U(x) =

{
1, sp − g(‖x‖) +Wpa < η,
0, otherwise, (9)

where Wpa ∼ N(0, σ2
pa) is the shadowing noise between the

primary and secondary transmitters. If U(x) = 1, a secondary
transmitter located at position x is sufficiently far away that
it can transmit to its corresponding secondary receiver in the
same spectrum band as the primary transmitter.

In this section, we assume that each secondary transmitter
ai, i ∈ A, transmits with a fixed power sa if it has the
right to access network. Let xi denote the position vector
corresponding to the secondary transmitter ai, i ∈ A. The
shadowing noise received at the victim node v due to the
transmission of secondary transmitter is given by Wva ∼
N(0, σ2

va). Hence, given the location of the primary receiver
xv , the aggregate interference from the secondary transmitters
can be characterized as

I =
∑
i∈A

U(xi) · 10
sa−g(‖xi−xv‖)+Wva

10 =
∑
i∈A

U(xi)h(xi)10
Wva
10 ,

(10)

where the summation is over the index set of the secondary

transmitters ai, i ∈ A, and

h(x) = 10
sa−g(‖x−xv‖)

10 .

Here, the aggregate interference is given in linear scale. Given
the location information Ω of all the secondary transmitters,
the moment generating function (see, e.g., [15, Chap. 8]) of
the aggregate interference can be derived as follows:

MI(t) = E[etI ] = E

[
et

∑
i∈A U(xi)h(xi)10

Wva
10

]
=
∏
i∈A

E

[
etU(xi)h(xi)10

Wva
10

]

= E

[∏
i∈A

E

[
etU(xi)h(xi)10

Wva
10

∣∣∣ Ω

]]
. (11)

Suppose {xi} is a Poisson point process with intensity
measure m(x)dx. Using properties of the Laplace functional
of the Poisson point process [11], [16], we can obtain the fol-
lowing equation for all nonnegative functions v(x) satisfying∫
R2(1− v(x))m(x)dx <∞:

E

[∏
i∈A

v(xi)

]
= exp

{
−
∫
R2

(1− v(x))m(x)dx

}
. (12)

Let

v(x) = E

[
etU(x)h(x)10

Wva
10

∣∣∣ Ω

]
. (13)

Applying (12) and (13) into (11), we can obtain the following
alternative expression for MI(t):

MI(t) = exp

{
−λ
∫
R2

(
1− E

[
etU(x)h(x)10

Wva
10

∣∣∣ Ω

])
dx

}
.

(14)
From the moment generating function, we can obtain the
expectation of the aggregate interference. The shadowing noise
variables Wpa and Wva are independent of each other, and are
independent of the locations of the secondary transmitters. For
simplicity, Wpa is determined by the primary transmitter and
Wva is determined by the victim receiver.

From the moment generating function MI(t), the expecta-
tion of the aggregate interference can be obtained as follows:

E(I) =
dMI(t)

dt

∣∣∣
t=0

= λ

∫
R2

E
[
U(x)h(x)10

Wva
10

∣∣∣ Ω
]
dx

= λ

∫
R2

h(x)E[U(x) | Ω] · E
[
10

Wva
10

]
dx. (15)

Here,

E
[
10

Wva
10

]
=

∫ +∞

−∞
10

w
10 · f(w;σ2

va)dw = eωva , (16)

where ωva , σ2
va

2(10 log10 e)
2 and f(w;σ2

va) denotes the proba-
bility density function (pdf) of Wva, and

E[U(x) | Ω] =

∫ η−sp+g(‖x‖)

−∞
f(w;σ2

pa)dw = β(x), (17)
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where β(x) , 1−Q(
η−sp+g(‖x‖)

σpa
) and f(w;σ2

pa) denotes the
pdf of Wpa. Using (15)–(17) we have

E[I] = λeωvaz(sa, xv), (18)

with

z(sa, xv) =

∫
R2

β(x)h(x)dx.

IV. POWER CONTROL BASED ON AGGREGATE
INTERFERENCE

In this section, we develop a power control scheme based on
knowledge of the aggregate interference. As described in [3],
for a single secondary transmitter, the maximum interference-
free transmit power (MIFTP) can be defined in terms of the
worst-case interference probability:

Pint(a) = sup
v
Pint(a, v) = Q

(
Imax − sa + g(d∗a)

σva

)
, (19)

where d∗a , dp,a−dcov(p) is called the critical distance for the
secondary transmitter a with respect to the primary transmitter
p, and the supremum is taken over all potential victim nodes
v such that dp,v ≤ dcov(p). The MIFTP is then given by
s∗a = max{sa : Pint(a) ≤ εint}, and we have

s∗a =

{
Imax + g(d∗a)− σvaQ−1(εint), if dp,a > dcov(p),
−∞, otherwise.

(20)

However, in the model presented here, multiple secondary
transmitters may transmit signals at the same time. The critical
distance for the ith secondary transmitter is defined as d∗ai ,
dp,ai − dcov(p) = ‖xi‖− dcov . In Fig. 1, the critical distances
corresponding to the secondary transmitters a1, a2, and a3, are
given by da1,v1 , da2,v2 , and da3,v3 , respectively. We assume
that each secondary transmitter that has the right to access the
network can contribute at most imax interference to the victim
node v, such that the sum of imax over all such secondary
transmitters should satisfy

∑
i∈A U(xi)imax ≤ Imax. Then

the ith secondary transmitter is permitted to transmit at a
power level not exceeding its group MIFTP or G-MIFTP
defined as follows:

s∗ai =

{
imax + g(d∗ai)− σvaQ

−1(εint), if dp,ai > dcov(p),
−∞, otherwise.

(21)

In this case, the problem of obtaining the G-MIFTP for sec-
ondary transmitters reduces to choosing the appropriate value
of imax. If each secondary transmitter that has permission
to access the network can transmit with G-MIFTP, the mean
aggregate interference is given by

E[I] = λ · 10
imax−σvaQ−1(εint)

10 eωvaz(xv), (22)

with

z(xv) =

∫
R2

β(x)10
g(‖x‖−dcov)−g(‖x−xv‖)

10 dx

=

∫
R2

β(x)

(
‖x‖ − dcov
‖x− xv‖

)κ
dx.

Fig. 2. Simulation scenario.

From the moment generating function of the aggregate inter-
ference, we can also obtain E[I2], and then the variance of
the aggregate interference can be obtained as follows:

Var(I) = λ · 10
imax−σvaQ−1(εint)

5 e
ωva
4 Γ(xv), (23)

with

Γ(xv) =

∫
R2

β(x)10
g(‖x‖−dcov)−g(‖x−xv‖)

5 dx

=

∫
R2

β(x)

(
‖x‖ − dcov
‖x− xv‖

)2κ

dx.

For a normal random variable X ∼ N(µ, σ), the probability
that the value of the variable X lies outside of the range [µ−
2σ, µ+2σ] is very low. Although the exact distribution cannot
be obtained, we have the mean and variance of the aggregate
interference. Based on this principle, in order to ensure that
the aggregate interference from all of the active secondary
transmitters is below Imax with high probability, we propose
the following equation:

E[I] + nσ = 10Imax/10, (24)

where n is chosen according to the requirements of the system.
From the above equation and (22), given the value of Imax,
we can obtain an approximate value for imax. In this way,
each active secondary transmitter may transmit with a power
level up to its G-MIFTP, given by (21), without violating the
given interference tolerance of the primary system.

V. NUMERICAL RESULTS

In this section, we present numerical results to demonstrate
the accuracy of our theoretical results and the performance
of our proposed power control algorithm. We choose our
simulation scenario as shown in Fig. 2. The area of interest is
a disk with radius R = 7 km and the primary transmitter is
located at the center, (0,0) km. The victim node is located at
(1,1) km, denoted by a triangle. The stars represent all the sec-
ondary transmitters having the opportunity to transmit in the
area, and the stars enclosed in circles represent the secondary
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Fig. 3. Expectation of aggregate interference for fixed power sa.

transmitters that are transmitting in the same spectrum band
as the primary transmitter. The Poisson point process intensity
is given by Λ = 1.0× 10−6, while the active probability α is
a parameter that is varied in our simulation experiments. The
path loss factor is given by κ = 4.

A. Fixed transmission power sa
We first consider the case where each secondary node trans-

mits at a fixed power level sa. The fixed transmission power
for the secondary transmitter is given as sa = 40 dBm, and
all the other relevant parameters are as follows: sp = 40 dBm,
σva = 2 dB, σpa = 2 dB, η = −110 dBm. We can calculate
the expectation of the aggregate interference for the fixed
transmission power by using (18). In order to verify this
result, we ran simulations with the active probability α ranging
from 0.1 to 1.0. Fig. 3 shows that the calculation matches
the simulation result very well. When α increases, the mean
number of transmitting secondary transmitters increases corre-
spondingly, and the expectation of the aggregate interference
also increases.

B. Transmission with G-MIFTP

Next, we assume that each active secondary node can trans-
mit up to a power level given by its G-MIFTP. The aggregate
interference threshold is given by Imax = −100 dBm, and we
choose n = 2 to calculate imax for each secondary transmitter.
The other relevant parameters are as follows: sp = 40 dBm,
σva = 2 dB, σpa = 2 dB, η = −110 dBm, εint = 0.01,
εcov = 0.05, rmin = −90 dBm. Fig. 4 shows that the expected
aggregate interference calculated for G-MIFTP using (22)
matches the simulation result very well. Moreover, with the
power control scheme based on (24), the expected aggregate
interference can always be maintained under the threshold
Imax.

Next, we pick up the active probability α = 0.05 to further
investigate the performance of the system. The power control
scheme ensures that the expectation of the aggregate interfer-
ence, E[I], is below Imax. Through simulations, we find that

Fig. 4. Expectation of aggregate interference for G-MIFTP model.

the probability that the expected aggregate interference lies
outside of the range [E[I]−2σ,E[I]+2σ] is about 6%. If we
wanted this probability to be even smaller, we could choose a
larger value of n for the system.

Finally, we compare the achievable capacities corresponding
to using the G-MIFTP model vs. the MIFTP model. The
achievable capacity for the ith secondary transmitter-receiver
pair is given by [17]:

Ci = B·E
{

log2

(
1 +

MIFTPi(di/d0)−κW

N0B
|Hi|2

)}
, (25)

where the expectation E[·] is taken with respect to the
shadowing noise W , Rayleigh fading coefficients Hi with
E{|H2

i |} = 1, and the transmitter-receiver distance di. In
the simulation, we set di = 1 km and d0 = 1 m. Fig. 5
shows the capacity improvement achieved by using G-MIFTP
rather than MIFTP. The power control scheme based on the G-
MIFTP outperforms that based on the MIFTP, since multiple
secondary nodes are allowed to transmit at the same time.

VI. CONCLUSION

We obtained an expression for the expectation of the ag-
gregate interference for a cognitive radio network where the
secondary transmitters are scattered according to a Poisson
point process. Based on knowledge of the aggregate inter-
ference, we proposed the G-MIFTP model for power control
and found that it resulted in significantly higher achievable
capacity for the secondary system by accommodating multiple
simultaneous secondary transmissions. The proposed power
control scheme ensures that the interference to the primary
receiver is kept under a certain threshold; however, the inter-
ference between secondary transmitter-receiver pairs was not
taken into account. In addition, to apply our results in a real
network, it would be of interest to estimate the intensity of
the Poisson point process in a given cognitive radio network.
We are currently pursuing these and related research issues.
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Fig. 5. Achievable capacity under the MIFTP and G-MIFTP models, α =
0.05.
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