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Abstract—Measurement-based approaches to geolocation of
Internet hosts typically employ active probes sent from a prede-
termined set of landmarks to the target with unknown location.
A significant improvement of such approaches can be made by
constructing kernel density estimators using measurement data of
end-to-end delays among all landmarks within the set. However,
obtaining the data for this statistical approach to geolocation
can be time-consuming, whereas the measurements are not all
of high quality due to the time-varying characteristics of the
network. To overcome these drawbacks, an ordinal optimization
scheme is proposed to determine a subset of the landmarks that
will yield improved geolocation accuracy with substantially less
overhead. Given a set of kernel density estimates obtained by
the landmarks, an optimization-based approach, with differential
evolution as the search engine, is developed to find the location of
the target. Numerical results demonstrate the efficiency, accuracy,
and robustness of the proposed geolocation scheme.

Index Terms—IP geolocation, ordinal optimization, kernel
density estimator, differential evolution

I. INTRODUCTION

A popular class of Internet geolocation techniques employs
active measurements to infer the location of unknown targets
using a set of fixed nodes, which are known as landmarks.
The landmarks are distributed geographically and reside in the
cloud. Thus, IP geolocation may be viewed as a cloud service
or application. Delay measurements obtained by landmarks
are used to estimate the location of the target Internet host.
However, the delay measurements may lead to significant
geolocation errors due to the nonlinearity and time-varying
characteristics of the network. Shortest Ping [1], [2] is an early
approach to geolocation whereby the location of the target is
estimated by the location of the landmark with the minimum
measured end-to-end delay to the target. However, using the
measurement data from the landmarks without preprocessing
can lead to a significant bias in the location estimates. A more
advanced approach, GeoPing, improves upon Shortest Ping
by introducing a group of passive landmarks. Nevertheless,
GeoPing is still sensitive to the quality of the measurement
data. As the number of passive landmarks grows, it will take
much longer to acquire the measurements.

Another class of approaches formulates IP geolocation as a
constrained optimization problem [3]. This requires a sufficient
number of measurements from each landmark for the baseline-
fitting problem, and the estimation accuracy is sensitive to
both the accuracy and quantity of the measurements. In the
CBDG scheme [4], circular constraints around the landmarks
are defined through the measurements, which are maintained

in a storage cloud and allocated to the landmarks. In [5], a
two-stage scheme is proposed to map the passive landmarks
into predetermined groups. In the first step, the approach
tries to determine the possible groups that contain the target,
then a mapping operation is applied to map the estimate to
one of the landmarks. To do this, a large number of passive
landmarks is required and the performance of the scheme
depends heavily on the selection of the groups of landmarks.
A database containing all the information of the landmarks
needs to be maintained as well. The Octant framework [6]
tries to define the possible region where the target may be
located. Some additional constraints are introduced to find
those regions in which the target is not likely to be located.
Since the bounds of the target are defined, the approach can
achieve higher accuracy. However, additional data related to
DNS naming patterns and hop-delays are required.

The aforementioned Internet geolocation techniques may be
classified as deterministic approaches, and may incur signifi-
cant errors. To improve estimation accuracy and achieve lower
complexity in algorithm implementation on real test platforms,
a statistical approach to geolocation was proposed in [7]. This
approach is based on the idea of kernel density estimators
(KDEs) and relies solely on measurement data. In the first
step, a set of KDEs is constructed using end-to-end delay
measurements from all landmarks to some given landmarks.
The KDEs are then maximized to obtain estimates of the
distance from these landmarks to the unknown target [7], [8].
A force-directed algorithm is applied to search for the location
of the target. Along similar lines, a spring-based approach was
presented in [9], which aims to find an equilibrium state for
the final estimate of the target estimation.

Statistical geolocation schemes can achieve relatively high
efficiency and geolocation accuracy. However, they have sev-
eral drawbacks: (1) To obtain a satisfactory estimation, a large
amount of measurement data needs to be obtained before each
KDE can be constructed, which incurs a significant overhead.
(2) Not all of the landmarks provide measurement data of
the same quality. The delay measurements may have large
fluctuations even for the same landmark. Furthermore, our
numerical results have shown that the force-directed algorithm
proposed in [7] can have convergence issues and may intro-
duce a substantial bias in the target location estimate.

In this paper, we propose a more robust approach to statisti-
cal geolocation that achieves higher estimation accuracy while
incurring lower processing overhead. This approach consists



of two phases. In the first phase of acquiring measurement
data, ordinal optimization is applied to effectively cut down
the redundant measurements and extract high-quality mea-
surement data. In the second phase, an optimization-based
approach with a differential evolution (DE) search engine is
applied to search for the location of the target. The rest of the
paper is organized as follows: Section II introduces the ordinal
optimization algorithm and the framework of the proposed
statistical geolocation scheme. In Section III, the optimization-
based DE search scheme is developed and compared to the
force-directed algorithm proposed in [7]. Section IV presents
numerical results to demonstrate the performance of the pro-
posed geolocation scheme, with comparisons to the statistical
scheme in [7]. Concluding remarks are given in Section V.

II. KDE CONSTRUCTION VIA ORDINAL OPTIMIZATION

In this section, we apply a technique called ordinal op-
timization (OO) to effectively reduce the number of mea-
surements required for IP geolocation and select the data
with better quality to construct KDEs. The OO technique has
been applied successfully to large-scale optimization prob-
lems with considerable uncertainties [10]. The OO approach
follows two main principles: (1) Due to uncertainties in the
experiments, we need to find some criteria to quantify the
performance of these solutions in order to rank them. (2)
If the candidate solutions can be ranked and sorted, we
regard the higher-ranked solutions as the best solutions and
neglect the lower-ranked solutions. In measurement-based IP
geolocation schemes, servers called landmarks collect delay
measurement data which is used to localize a given target
host. The OO approach can be used to identify the best set of
delay measurements to use for IP geolocation of a given host.

With respect to the geolocation problem, landmarks that
are closer to the target are more likely to provide reliable
measurements, since the geographic distance is much shorter.
In other words, the quality of measurements depends strongly
on the location of the corresponding landmark. End-to-end
delays are assumed to be roughly proportional to geographic
distances [9], [11]. This assumption has been verified in some
regions such as North America [1], and it is most likely
that the shortest delays come from the nearest landmarks [5].
We regard the landmarks that have lower end-to-end delay
measurements to the target as ‘better’ landmarks. Another
issue that needs to be considered is the stability of delay
measurements. If the delay measurements of one landmark
change very often from time to time, i.e., the variance of the
measurements is large, we do not regard the landmark as good
with respect to localizing the target. Hence, if we can pick
such a subset of ‘good’ landmarks and use their measurement
data to do the estimation, the performance of the statistical
geolocation approach can be improved significantly.

Since both the value and stability of the delay measurements
are critical to performance evaluation, the following analytical
expression is proposed to represent the performance of the

landmarks with respect to the geolocation problem:
Q = kldavg + k2027 (D

where d., is the average landmark-to-target delay, o2 is the
variance, and k; and ko are two properly selected constant
scalars. This equation takes both the distance and the stability
of measurements into consideration to quantify the overall
performance and imposes a balance between them. Basically,
landmark-to-landmark and landmark-to-target delay measure-
ments are both acquired in the first phase. The statistics of
the latter measurements indicate the geographic distance to the
target and the stability of measurements. Thus, it is reasonable
to choose the landmark-to-target measurements to compute
Q. As the number of measurements grows, the statistics of a
certain landmark should converge to steady-state values, and
hence @ is suitable as a performance indicator in the ordinal
optimization process.

In each iteration of the geolocation algorithm, landmarks
with lower @ value are given a higher rank after each iteration,
and the delay measurements from the top-ranking landmarks
are used to construct KDEs after all the measurements are
assigned. The KDE for a given landmark ¢ is computed as
follows:

fin(g,d)= (9 — gijrd —dij)H™),
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where £ is the set of landmarks, M is the total number of
measurements taken from landmark ¢, g;; is the geographic
distance between landmarks 7 and j, d;; is the estimated
delay between landmarks ¢ and j, and H is a nonsingular
bandwidth matrix given by Scott’s rules-of-thumb [12], [13].
The Gaussian kernel « has the following form:

1 _
H(g7d) = %6

More details on KDEs for IP geolocation can be found in [7].

In the statistical geolocation approach of [7], each landmark
takes a large number of measurements, which is a time-
consuming process. For a certain landmark, the time interval
between every pair of consecutive measurements is fixed. To
reduce the time overhead and select the better landmarks for
geolocation, we propose to integrate OO into the statistical ge-
olocation procedure. The general idea is to gradually allocate
a predetermined measurement budget to these landmarks. At
an initial stage, a certain number of measurements is assigned
to each landmark to obtain a rough estimate, and an addi-
tional number of measurements is assigned in every following
iteration to calibrate the value of (). The loop terminates
when the measurement budget is achieved. A typical allocation
scheme is proposed in [14]. As the allocation process proceeds,
the ranking of the landmarks stabilizes such that the best
landmarks are selected.

Note that in the allocation process of OO, the landmarks
are assigned different numbers of measurements. A larger
portion of the measurements is allocated to the more promising
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landmarks. Since the landmarks can make delay measurements
simultaneously, the duration of each iteration is limited by the
maximum number of measurements assigned to any one of
the landmarks. The measurement budget, the measurements at
the initial stage, and the additional budget in the subsequent
iterations can be regarded as control parameters for OO and
they should be selected properly to avoid high time overhead.
Some additional measurements can be performed for the top-
ranked landmarks so as to reach the same maximum number
in each iteration, since these will not introduce additional time
overhead.

Once we have the data from the selected subset of land-
marks, a KDE for each landmark in this subset can be
constructed. Typically, a KDE can be illustrated on a distance-
delay plane as a contour plot. By maximizing the KDEs, we
can derive the corresponding distance estimates to the target.
For a given landmark, if the distance estimate is g, then the
target is assumed to lie on the border of the circle with its
center at the landmark and a radius of g. In practical scenarios,
the statistical nature of the measurements must be taken into
account. The OO-based method for constructing the KDEs for
statistical geolocation is summarized in Algorithm 1.

Algorithm 1 Phase 1: OO-based construction of KDEs.
. Initialize £ to be the set of all landmarks.
Initialize B to be the empty set.
Let N be the number of best landmarks to be chosen.
Initialize control parameters for OO.
while stopping criterion not met do
Execute measurements as allocated to each landmark.
for each landmark ¢ € £ do
Update the quality indicator Q);
end for
10: Rank landmarks within £ according to their ) values.
Select N top-ranked landmarks to form the set 5.
12: Compute measurement budgets for all landmarks in L.
13: end while
14: for each landmark i € 5 do
15: Construct KDE;.
16: Compute average landmark-to-target delay d;.
17: Find maximum of KDE; for a fixed d;.
18: end for
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III. OPTIMIZATION-BASED SEARCH STRATEGY

Once the KDEs for all of the best landmarks have been
constructed, the second phase of our statistical geolocation
approach applies a search strategy to find the location of the
target. We propose an optimization-based search procedure,
which employs differential evolution as the search engine.
In this section, we first briefly discuss the force-directed
algorithm originally proposed in [7], and then introduce the
optimization-based approach.

A. Force-directed algorithm

In the force-directed algorithm (FDA) proposed in [7], the
target location estimate is initialized to a suitable starting

location, e.g., the landmark with the shortest mean delay to
the target. A similar idea was also applied in a ’spring-based’
approach [9] which uses forces to push the target estimate to
a final position. In FDA, we iteratively apply a force on the
target estimate proportional to the gradient of the estimated
conditional distribution of distance from each landmark to
the target given the delay. In each iteration, the resultant
of the forces from all landmarks is calculated. The target
location estimate is then moved according to the resultant force
vector. The step sizes for the gradient ascent algorithm form
a sequence that converges to zero. The canonical FDA of [7]
suffers from the uncertainty of the measurements and may
have convergence issues. An initial guess far from the selected
landmarks can easily move away from the actual location of
the target.

B. Optimization-based approach with differential evolution

The basic idea of the optimization-based approach is to
maximize the conditional KDEs for each landmark simultane-
ously, which leads to a multi-objective optimization problem.
To achieve a tradeoff between these objectives, a weight vector
is used to construct an objective function, and this replaces the
multi-objective problem with a single objective optimization
problem. Such an objective function is given as follows:
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where w;(d;;) is the ith term of the weight vector, and
the geographic distance g; can be derived using the inverse
Vincenty formula (see [7]). It is clear that the weight vector
must be selected properly. In our experiments, the weight
w;(d;-) is set to a value inversely proportional to the mean
delay, (d; ), from the ith landmark to the target. For simplicity,
we have set w;(d;;) = 1/d;.. The objective function thus
becomes:
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Next we discuss the search engine employed in the search-
ing process. Since our aim is to determine the longitude and
latitude estimate of the target within a 2-dimensional continu-
ous searching space, standard nonlinear optimizers such as gra-
dient descent can be applied. However, as the landscape of the
objective function can be rather complex in practical scenarios,
heuristic approaches such as evolutionary computation (EC)
becomes a more competitive choice. Differential evolution
(DE) is one of the most powerful and robust search engines in
EC class for continuous optimization problems [15]. The DE
method uses differential operators to generate new candidate
solutions for further searching. A population of N candidate
vectors (z', 22, ..2") is maintained in each iteration. Each
candidate vector consists of d dimensions. One strategy in the
family of DE algorithms, called DE/best/1, first produces a
donor vector v as follows:

maxf ¢a fG”Di (gz|d2‘r) (5)

v=a"+F- (2" —z"), (6)



where 1 and ro are two mutually different indices randomly
selected from the set 1,2,..., N, and z* is the best vector
within the current population. The vector "' — 2" is called
the mutant vector, and F' is referred to as the scaling factor.
Then a crossover operator is applied to generate the offspring

vector u:
Vs
U; = 7
Tj,

where u; denotes the jth dimension of u, U is a uniform ran-
dom variable within range [0, 1], v is known as the crossover
rate, and J is random number chosen from 1,--- ,d. After
crossover, a pairwise selection is performed to choose the
better population vector between =" and u. More guidance for
parameter settings and strategy selection for the DE method
can be found in [15].

ifU<~yorj=J,
otherwise,

(7

1V. EXPERIMENTAL RESULTS
A. Network model and parameter settings

In a real network, the end-to-end delay experienced by a
packet sent from one node to another is a random variable with
an unknown distribution. The variability is caused by several
factors, including the presence of multiple alternative paths
and random queueing delays. In a moderately connected area,
the routers and links are assumed to be uniformly distributed
and have a sufficiently high density, and the distance-delay
relation is expected to exhibit a linear characteristic. Hence,
from a statistical view, we can roughly model the delay
measurement 7 as follows:

Kxg

Ty = +W, ®)
where ¢ is the actual geographic distance from one node to
another, c is the speed of light, and K and W are Gaussian
random variables. Due to the homogeneous propagation prop-
erty of optical fiber, the delay is assumed to be approximately
proportional to the actual distance. This latency model is
also adopted in some other approaches [9], [11], [16]. The
deterministic baseline proposed in [3] has a similar expression
as well. These approaches often try to estimate the parameters
in the model by doing curve fitting. However, in our approach,
such estimation is not necessary and we can directly use
the measurements to search for the target. The measurement
results are accumulated on each of the landmarks for a future
selection process.

A real-world network for IP geolocation is depicted in
Fig. 1, in which the asterisks represent the positions of land-
marks distributed over the continental U.S. These landmarks
are real Internet servers which are interconnected through
other nodes and routers in the network. To experimentally
study the performance of the proposed approach through
simulations, we randomly generate a total number of N = 50
landmarks within a 2-dimensional searching area and apply the
proposed OO-assisted statistical geolocation approach to find
the position of the target. For the delay model, the parameter
settings are K ~ N (1.2,0.2/3) and W ~ N(1,1/3). For

Fig. 1. The distribution of landmarks in U.S. continent.

simplicity, we take ¢ = 3. For the ordinal optimization process,
we take k1 = 0.8 and ko = 0.2, and the maximum number of
landmarks within the best set is set to B = 10. The KDEs are
constructed using the measurement data from these 10 land-
marks. The distribution of the landmarks and target is shown
in Fig. 2, in which the landmarks are denoted by asterisks, and
the target is denoted by a red circle. The landmarks shown in
red are those selected by the OO technique.
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Fig. 2. Distribution of landmarks and target.

A typical contour plot of a KDE is given in Fig. 3. In this
plot, we show the KDE constructed using one landmark. The
lower figure is the KDE constructed from all measurement
data, while the upper one is the KDE constructed from the 10
best landmarks. We can see that the KDE constructed from full
measurement data has one local optimum and one global opti-
mum. The global optimum of the KDE derived from the OO-
based approach is very close to that of the original statistical
approach, and very little degradation is incurred. In the above
experiment without an OO procedure, we set the number of
measurements for each landmark as 1000. Thus, a total number
of 50 - 50 - 1000 = 2.5 x 10% measurements are needed to
construct all of the KDEs. The number of measurements with
an OO technique is only 10-10-350 = 3.5 x 10%. This greatly



reduces the time overhead and computational expense for the
searching phase, and the time spent on obtaining this data
is approximately 35% compared with the approach proposed
in [7].

Fig. 3. Typical contour plot of a KDE.

B. Results using force-directed algorithm

For the second phase of the entire searching process, we first
investigate the performance of the FDA strategy. By fixing the
delay as the average landmark-to-target delay, the conditional
KDEs of the 10 best landmarks are derived and are shown in
Fig. 4. Tt is clear that each conditional KDE has a peak and
the target is assumed to lie on the circle with a radius that
maximizes the corresponding conditional KDE. We randomly
chose 100 starting points for the target location estimate. The
trajectories of the location estimates are shown in Fig. 5. In
this experiment, the trajectories corresponding to 12 out of the
100 starting points did not converge to a point near the target.
The mean and variance of the location estimation area for the
remaining tests were 8.46 and 3.47 x 10~%, respectively.
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Fig. 4. Conditional distribution of distance in KDEs of all the best landmarks.
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Fig. 5. Convergence curves for 100 different starting points using force-
directed algorithm.

C. Results using optimization-based approach

Fig. 6. Contour plot of weighted linear objective function.

In this approach, we first test the same group of landmark
settings and measurement data as in FDA. The contour plot
of the weighted objective function given by (5) is shown in
Fig. 6. It is clear that the global optimum is quite close to
the true target location, and this shows the effectiveness of
the weighted objective function. The DE algorithm using the
DE/best/1 strategy is applied to search for the target location.
In all of our experiments, the DE method converged on the
global optimum solution. Since the DE method is a population-
based search engine, the time spent on a single run is longer
than that FDA, but much shorter relative to the first phase.

We performed a total number of 10 runs using the
optimization-based approach. In each run, the maximum num-
ber of DE iterations was set to 100. In contrast to the FDA
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Fig. 7. Contour plot of weighted linear objective function for the second group
of settings.

approach, all of the 10 runs converged to an estimate close
to the true target location. The mean and variance of the
estimation error for these 10 runs were 2.34 and 7.33 x 107,
respectively. The contour plot of the objective function for a
second experiment with randomized landmark/target settings
is shown in Fig. 7. In this case, the global optimum is
much closer to the real target compared to the convergence
region of the FDA approach when it is applied with the same
landmark/target settings.

D. Comments

Our numerical experiments have shown that the FDA ap-
proach frequently does not converge when initialized from ran-
dom starting points, whereas the optimization-based approach
always converges. When the FDA approach does converge,
the mean geolocation error achieved is typically similar to or
worse than that of the proposed optimization-based approach.
On the other hand, the variance of the geolocation error of the
FDA approach was always found to be larger than that of the
optimization-based approach.

V. CONCLUSION

We proposed a two-phase scheme for robust statistical IP
geolocation. The first phase incorporates ordinal optimization
to reduce the time and computation overhead of collecting
statistical measurement data from landmarks in the network.
The second phase consists of a differential evolution engine
which solves a global optimization problem formulated to
an estimate of the target location based on the statistical
measurement data. Our numerical experiments show that the
proposed approach uses only a small portion of the total
measurements used in the statistical geolocation scheme of [7]
and requires about 35% of the total computation time. In
searching for the target location, the weighted optimization-
based approach obtains results of similar or better estimation

accuracy regardless of the starting point and the measurement
data used. Unlike the force-directed algorithm proposed in [7],
the differential evolution solver always converges to a fixed
target location estimate.
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